Nanoscience-often summarized as "the future is tiny"-highlights the work of researchers advancing nanotechnology through incremental innovations. The design and innovation of new nanomaterials are vital for the development of next-generation three-dimensional (3D) printed structures characterized by low cost, high speed, and versatile capabilities, delivering exceptional performance in advanced applications. The integration of nanofillers into polymeric-based inks for 3D printing heralds a new era in additive manufacturing, allowing for the creation of custom-designed 3D objects with enhanced multifunctionality.
View Article and Find Full Text PDFFlocculation is a type of aggregation where the surfaces of approaching droplets are still at distances no closer than a few nanometers while still remaining in close proximity. In a high internal-phase oil-in-water (O/W) emulsion, the state of flocculation affects the bulk flow behavior and viscoelasticity, which can consequently control the three-dimensional (3D)-printing process and printing performance. Herein, we present the assembly of O/W Pickering high-internal-phase emulsions (Pickering-HIPEs) as printing inks and demonstrate how depletion flocculation in such Pickering-HIPE inks can be used as a facile colloidal engineering approach to tailor a porous 3D structure suitable for drug delivery.
View Article and Find Full Text PDFCurr Res Food Sci
February 2024
Hierarchically porous structures combine microporosity, mesoporosity, and microporosity to enhance pore accessibility and transport, which are crucial to develop high performance materials for biofabrication, food, and pharmaceutical applications. This work aimed to develop a 4D-printed smart hierarchical macroporous structure through 3D printing of Pickering-type high internal phase emulsions (Pickering-HIPEs). The key was the utilization of surface-active (hydroxybutylated) starch nanomaterials, including starch nanocrystals (SNCs) (from waxy maize starch through acid hydrolysis) or starch nanoparticles (SNPs) (obtained through an ultrasound treatment).
View Article and Find Full Text PDFThe interconnected hierarchically porous structures are of key importance for potential applications as substrates for drug delivery, cell culture, and bioscaffolds, ensuring cell adhesion and sufficient diffusion of metabolites and nutrients. Here, encapsulation of a vitamin C-loaded gel-like double emulsion using a hydrophobic emulsifier and soy particles was performed to develop a bioactive bioink for 3D printing of highly porous scaffolds with enhanced cell biocompatibility. The produced double emulsions suggested a mechanical strength with the range of elastic moduli of soft tissues possessing a thixotropic feature and recoverable matrix.
View Article and Find Full Text PDF