This perspective discusses the importance of characterizing, quantifying, and accounting for various sources of uncertainties involved in different layers of hydrometeorological and hydrodynamic model simulations as well as their complex interactions and cascading effects (e.g., uncertainty propagation) in forecasting compound flooding (CF).
View Article and Find Full Text PDFDroughts are among the costliest natural hazards that occur annually worldwide. Their socioeconomic impacts are significant and widespread, affecting the sustainable development of human societies. This study investigates the influence of different forcing precipitation data in driving Land Surface Models (LSMs) and characterizing drought conditions.
View Article and Find Full Text PDFThis article presents a novel approach to couple a deterministic four-dimensional variational (4DVAR) assimilation method with the particle filter (PF) ensemble data assimilation system, to produce a robust approach for dual-state-parameter estimation. In our proposed method, the Hybrid Ensemble and Variational Data Assimilation framework for Environmental systems (HEAVEN), we characterize the model structural uncertainty in addition to model parameter and input uncertainties. The sequential PF is formulated within the 4DVAR system to design a computationally efficient feedback mechanism throughout the assimilation period.
View Article and Find Full Text PDF