Publications by authors named "Peygham Ghaffari"

Plastic pollution is ubiquitous in the marine environment. Beach cleanups are considered a cost-effective mitigative measure with generally few negative environmental impacts. Beached litter is not static, however, and may wash back out to sea or be buried, meaning it is only temporarily available for cleanup.

View Article and Find Full Text PDF

The Caspian Sea, the world's largest enclosed water body, experiences significant transformations in its physico-chemical properties and a decline in bioresources due to extensive anthropogenic activities. These activities include the discharge of diverse pollutants and bio-physical alterations such as over-fishing, hunting, and physical alterations to rivers. While acute manifestations such as a fall in the Caspian water levels and wetland desiccation are more overt, the pervasive impact of human activities contributes to a likely irreversible decline in environmental quality that we aim to spotlight in this discussion in order to facilitate its restoration.

View Article and Find Full Text PDF

This study introduces an alternative to the existing methods for measuring ocean currents based on a recently developed technology. The SailBuoy is an unmanned surface vehicle powered by wind and solar panels that can navigate autonomously to predefined waypoints and record velocity profiles using an integrated downward-looking acoustic Doppler current profiler (ADCP). Data collected on two validation campaigns show a satisfactory correlation between the SailBuoy current records and traditional observation techniques such as bottom-mounted and moored current profilers and moored single-point current meter.

View Article and Find Full Text PDF

Effective ocean management requires integrated and sustainable ocean observing systems enabling us to map and understand ecosystem properties and the effects of human activities. Autonomous subsurface and surface vehicles, here collectively referred to as "gliders", are part of such ocean observing systems providing high spatiotemporal resolution. In this paper, we present some of the results achieved through the project "Unmanned ocean vehicles, a flexible and cost-efficient offshore monitoring and data management approach-GLIDER".

View Article and Find Full Text PDF