Publications by authors named "Petzold C"

Article Synopsis
  • Sustainably grown biomass can be used to create fuel and chemicals, helping us use less fossil fuels.
  • Converting biomass into biofuels involves a lot of testing and can take a long time because there are many different combinations of materials and methods to try.
  • Scientists created a new automated system that makes it faster and easier to test different types of biomass, and they showed that it can produce good amounts of useful fuel in a short time.
View Article and Find Full Text PDF

X-ray footprinting coupled with mass spectrometry (XFMS) presents a novel approach in structural biology, offering insights into protein conformation and dynamics in the solution state. The interaction of the cancer-immunotherapy monoclonal antibody nivolumab with its antigen target PD-1 was used to showcase the utility of XFMS against the previously published crystal structure of the complex. Changes in side-chain solvent accessibility, as determined by the oxidative footprint of free PD-1 versus PD-1 bound to nivolumab, agree with the binding interface side-chain interactions reported from the crystal structure of the complex.

View Article and Find Full Text PDF

Pyrone-2,4-dicarboxylic acid (PDC) is a valuable polymer precursor that can be derived from the microbial degradation of lignin. The key enzyme in the microbial production of PDC is 4-carboxy-2-hydroxymuconate-6-semialdehyde (CHMS) dehydrogenase, which acts on the substrate CHMS. We present the crystal structure of CHMS dehydrogenase (PmdC from Comamonas testosteroni) bound to the cofactor NADP, shedding light on its three-dimensional architecture, and revealing residues responsible for binding NADP.

View Article and Find Full Text PDF

Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria that encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semipermeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry.

View Article and Find Full Text PDF

Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism.

View Article and Find Full Text PDF

Volume electron microscopy encompasses a set of electron microscopy techniques that can be used to examine the ultrastructure of biological tissues and cells in three dimensions. Two block face techniques, focused ion beam scanning electron microscopy (FIB-SEM) and serial block face scanning electron microscopy (SBF-SEM) have often been used to study biological tissue samples. More recently, these techniques have been adapted to in vitro tissue culture samples.

View Article and Find Full Text PDF

Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.

View Article and Find Full Text PDF

Steroidal alkaloids are FDA-approved drugs (e.g., Zytiga) and promising drug candidates/leads (e.

View Article and Find Full Text PDF

Engineered reverse hairpin constructs containing a partial C-heptad repeat (CHR) sequence followed by a short loop and full-length N-heptad repeat (NHR) were previously shown to form trimers in solution and to be nanomolar inhibitors of HIV-1 Env mediated fusion. Their target is the in situ gp41 fusion intermediate, and they have similar potency to other previously reported NHR trimers. However, their design implies that the NHR is partially covered by CHR, which would be expected to limit potency.

View Article and Find Full Text PDF
Article Synopsis
  • Sunscreen has a long history of use for skin protection, but modern ingredients like oxybenzone and ZnO raise health and environmental concerns.
  • This study focuses on creating a microbial platform using Pseudomonas putida to produce shinorine, a compound that absorbs UV light and has anti-aging benefits.
  • Researchers used advanced techniques such as CRISPRi, biosynthetic pathway optimization, and amino acid feeding experiments to enhance shinorine production and identify key factors influencing its yield.
View Article and Find Full Text PDF

Modification of lignin in feedstocks via genetic engineering aims to reduce biomass recalcitrance to facilitate efficient conversion processes. These improvements can be achieved by expressing exogenous enzymes that interfere with native biosynthetic pathways responsible for the production of the lignin precursors. In planta expression of a bacterial 3-dehydroshikimate dehydratase in poplar trees reduced lignin content and altered the monomer composition, which enabled higher yields of sugars after cell wall polysaccharide hydrolysis.

View Article and Find Full Text PDF
Article Synopsis
  • QS-21 is a clinically approved saponin-based vaccine adjuvant, but its extraction is challenging due to its complex structure and limited supply from natural sources or low-yield chemical synthesis.
  • Researchers have achieved the complete biosynthesis of QS-21 and its precursors in engineered yeast strains by carefully tuning the yeast's metabolic pathways and expressing 38 foreign enzymes from six different organisms.
  • This innovative microbial production method not only simplifies the production of QS-21 but also allows for the creation of structural analogues, paving the way for improved vaccine adjuvant design based on structure-activity relationships.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates if high-dose cytarabine-based salvage chemotherapy before allogeneic stem-cell transplantation improves survival in patients with acute myeloid leukaemia who haven't responded well to previous treatments.
  • 281 patients aged 18 to 75 were randomly assigned to either receive chemotherapy or immediate stem-cell transplantation; the main goal was to measure treatment success as complete remission by day 56 after HSCT.
  • Results showed that 83% of patients in the chemotherapy group achieved treatment success, suggesting that prior chemotherapy could be an effective approach before transplantation in these patients.
View Article and Find Full Text PDF

Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria which encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semi-permeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry.

View Article and Find Full Text PDF

Filamentous fungi are critical in the transition to a more sustainable food system. While genetic modification of these organisms has promise for enhancing the nutritional value, sensory appeal, and scalability of fungal foods, genetic tools and demonstrated use cases for bioengineered food production by edible strains are lacking. Here, we develop a modular synthetic biology toolkit for Aspergillus oryzae, an edible fungus used in fermented foods, protein production, and meat alternatives.

View Article and Find Full Text PDF
Article Synopsis
  • * Pseudomonas putida has been identified as a promising microorganism for producing isoprenol due to its ability to utilize low-cost plant biomass.
  • * Researchers have successfully engineered P. putida using computational models to optimize the pathway for isoprenol production, achieving a titer of 3.5 g/L, which highlights the potential for sustainable biofuel production from renewable sources.
View Article and Find Full Text PDF

Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited.

View Article and Find Full Text PDF
Article Synopsis
  • - Microsporidia are fungal pathogens that can cause severe infections in humans and are dependent on their host's resources for growth and reproduction.
  • - Using advanced 3D imaging techniques, researchers studied the development of the microsporidian species Encephalitozoon intestinalis within human cells, revealing how it assembles its infection organelle, the polar tube.
  • - The study found that E. intestinalis infection significantly alters the structure of host cell mitochondria, indicating a complex interaction between the parasite and host cell organelles during infection.
View Article and Find Full Text PDF

Type I polyketide synthases (T1PKSs) hold enormous potential as a rational production platform for the biosynthesis of specialty chemicals. However, despite great progress in this field, the heterologous expression of PKSs remains a major challenge. One of the first measures to improve heterologous gene expression can be codon optimization.

View Article and Find Full Text PDF

have emerged as promising biocatalysts for the conversion of sugars and aromatic compounds obtained from lignocellulosic biomass. Understanding the role of carbon catabolite repression (CCR) in these strains is critical to optimize biomass conversion to fuels and chemicals. The CCR functioning in M2, a strain capable of consuming both hexose and pentose sugars as well as aromatic compounds, was investigated by cultivation experiments, proteomics, and CRISPRi-based gene repression.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are trying to make more of a special substance called indigoidine using a bacteria called Pseudomonas putida.
  • They used a method that links the bacteria's growth to how much indigoidine it makes, testing over 4,100 possible ways to do this.
  • After many experiments, they created a version of the bacteria that makes a lot of indigoidine using a plant chemical called para-coumarate, showing that their approach works well for different settings and products.
View Article and Find Full Text PDF

Recent advances in volume electron microscopy (vEM) allow unprecedented visualization of the electron-dense structures of cells, tissues and model organisms at nanometric resolution in three dimensions (3D). Light-based microscopy has been widely used for specific localization of proteins; however, it is restricted by the diffraction limit of light, and lacks the ability to identify underlying structures. Here, we describe a protocol for ultrastructural detection, in three dimensions, of a protein (Connexin 43) expressed in the intercalated disc region of adult murine heart.

View Article and Find Full Text PDF

Microsporidia are an early-diverging group of fungal pathogens that infect a wide range of hosts. Several microsporidian species infect humans, and infections can lead to fatal disease in immunocompromised individuals. As obligate intracellular parasites with highly reduced genomes, microsporidia are dependent on metabolites from their hosts for successful replication and development.

View Article and Find Full Text PDF

Plate-based proteomic sample preparation offers a solution to the large sample throughput demands in the biotechnology field where hundreds or thousands of engineered microbes are constructed for testing is routine. Meanwhile, sample preparation methods that work efficiently on broader microbial groups are desirable for new applications of proteomics in other fields, such as microbial communities. Here, we detail a step-by-step protocol that consists of cell lysis in an alkaline chemical buffer (NaOH/SDS) followed by protein precipitation with high-ionic strength acetone in 96-well format.

View Article and Find Full Text PDF

High GC bacteria from the genus Streptomyces harbor expansive secondary metabolism. The expression of biosynthetic proteins and the characterization and identification of biological "parts" for synthetic biology purposes from such pathways are of interest. However, the high GC content of proteins from actinomycetes in addition to the large size and multi-domain architecture of many biosynthetic proteins (such as non-ribosomal peptide synthetases; NRPSs, and polyketide synthases; PKSs often called "megasynthases") often presents issues with full-length translation and folding.

View Article and Find Full Text PDF