The productivity of plants is considerably affected by various environmental stresses. Exploring the specific pattern of the near-infrared spectral data acquired non-destructively from plants subjected to stress can contribute to a better understanding of biophysical and biochemical processes in plants. Experiments for investigating NIR spectra of maize plants subjected to water stress were conducted.
View Article and Find Full Text PDFXylem sap is a fluid that transfers water and nutrients from the rhizosphere. This sap contains relatively low concentrations of proteins that originate from the extracellular space among the root cells. One of the characteristic proteins in the xylem sap of the Cucurbitaceae family, which includes cucumber and zucchini, is a major latex-like protein (MLP).
View Article and Find Full Text PDFEndocrine-disrupting chemicals (EDCs) are widespread contaminants that severely affect the endocrine systems of living organisms. In addition to the conventional instrument-based approaches for quantifying organic pollutants, a monitoring method using transgenic plants has also been proposed. Plants carrying a recombinant receptor gene combined with a reporter gene represent a system for the easy detection of ligands that specifically bind to the receptor molecule.
View Article and Find Full Text PDFThe environmental spread of hydrophobic pollutants has been receiving attention because of specific characteristics of these compounds that make them resistant to degradation, thus causing various toxic effects on humans as a result of their bioaccumulation. Here, we report the role of zucchini major-latex like proteins (MLPs) on the accumulation of hydrophobic pollutants, as consumption of contaminated crops is one of the main routes for accumulation. Transgenic tobacco plants expressing an aryl hydrocarbon receptor (AhR) gene with a β-glucuronidase (GUS) inducible expression system were transformed with one of the three zucchini MLP genes (PG1, GR1, and GR3).
View Article and Find Full Text PDF