Publications by authors named "Pety J"

Most stars in today's Universe reside within spheroids, which are bulges of spiral galaxies and elliptical galaxies. Their formation is still an unsolved problem. Infrared/submillimetre-bright galaxies at high redshifts have long been suspected to be related to spheroid formation.

View Article and Find Full Text PDF

The Barnard 1b core shows signatures of being at the earliest stages of low-mass star formation, with two extremely young and deeply embedded protostellar objects. Hence, this core is an ideal target to study the structure and chemistry of the first objects formed in the collapse of prestellar cores. We present ALMA Band 6 spectral line observations at ~0.

View Article and Find Full Text PDF

Context: Sulphur is one of the most abundant elements in the Universe (S/H1.310 ) and plays a crucial role in biological systems on Earth. The understanding of its chemistry is therefore of major importance.

View Article and Find Full Text PDF

We have developed the first gas-grain chemical model for oxygen fractionation (also including sulphur fractionation) in dense molecular clouds, demonstrating that gas-phase chemistry generates variable oxygen fractionation levels, with a particularly strong effect for NO, SO, O, and SO. This large effect is due to the efficiency of the neutral O + NO, O + SO, and O + O exchange reactions. The modeling results were compared to new and existing observed isotopic ratios in a selection of cold cores.

View Article and Find Full Text PDF

We present 1″-resolution ALMA observations of the circumnuclear disk (CND) and the interstellar environment around Sgr A*. The images unveil the presence of small spatial scale CO (=3-2) molecular "cloudlets" (≲20,000 AU size) within the central parsec of the Milky Way, in other words, inside the cavity of the CND, and moving at high speeds, up to 300 km s along the line-of-sight. The CO-emitting structures show intricate morphologies: extended and filamentary at high negative-velocities (v ≲-150 km s), more localized and clumpy at extreme positive-velocities (v ≳+200 km s).

View Article and Find Full Text PDF

The properties of molecular gas, the fuel that forms stars, inside the cavity of the circumnuclear disk (CND) are not well constrained. We present results of a velocity-resolved submillimeter scan (~480 to 1250 GHz) and [C ii] 158 m line observations carried out with /HIFI toward Sgr A*; these results are complemented by a ~2'×2' CO (=3-2) map taken with the IRAM 30 m telescope at ~7″ resolution. We report the presence of high positive-velocity emission (up to about +300 km s) detected in the wings of CO =5-4 to 10-9 lines.

View Article and Find Full Text PDF

We present the first detection of gas phase SH in the Horsehead, a moderately UV-irradiated nebula. This confirms the presence of doubly sulfuretted species in the interstellar medium and opens a new challenge for sulfur chemistry. The observed SH abundance is ~5×10, only a factor 4-6 lower than that of the widespread HS molecule.

View Article and Find Full Text PDF

During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose.

View Article and Find Full Text PDF

Context: Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs).

Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud.

View Article and Find Full Text PDF

Aims: The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of collapsing cores predict that rotationally supported disks may form in strongly magnetized cores through ambipolar diffusion or misalignment between the rotation axis and the magnetic field orientation. Detailed studies of individual sources are needed to cross check the theoretical predictions.

View Article and Find Full Text PDF

We investigate the presence of complex organic molecules (COMs) in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre (mm) line survey using the IRAM 30 m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.

View Article and Find Full Text PDF

The extremely young Class 0 object B1b-S and the first hydrostatic core (FSHC) candidate, B1b-N, provide a unique opportunity to study the chemical changes produced in the elusive transition from the prestellar core to the protostellar phase. We present 40"×70" images of Barnard 1b in the CO 1→0, CO 1→0, NHD 1→1, and SO 3→2 lines obtained with the NOEMA interferometer. The observed chemical segregation allows us to unveil the physical structure of this young protostellar system down to scales of ∼500 au.

View Article and Find Full Text PDF

Context: L1630 in the Orion B molecular cloud, which includes the iconic Horsehead Nebula, illuminated by the star system Ori, is an example of a photodissociation region (PDR). In PDRs, stellar radiation impinges on the surface of dense material, often a molecular cloud, thereby inducing a complex network of chemical reactions and physical processes.

Aims: Observations toward L1630 allow us to study the interplay between stellar radiation and a molecular cloud under relatively benign conditions, that is, intermediate densities and an intermediate UV radiation field.

View Article and Find Full Text PDF

We report high angular resolution (4.9″×3.0″) images of reactive ions SH, HOC, and SO toward the Orion Bar photodissociation region (PDR).

View Article and Find Full Text PDF

The CO reactive ion is thought to be a tracer of the boundary between a HII region and the hot molecular gas. In this study, we present the spatial distribution of the CO rotational emission toward the Mon R2 star-forming region. The CO emission presents a clumpy ring-like morphology, arising from a narrow dense layer around the HII region.

View Article and Find Full Text PDF

Context: Barnard B1b has revealed as one of the most interesting globules from the chemical and dynamical point of view. It presents a rich molecular chemistry characterized by large abundances of deuterated and complex molecules. Furthermore, it hosts an extremely young Class 0 object and one candidate to First Hydrostatic Core (FHSC) proving the youth of this star forming region.

View Article and Find Full Text PDF

The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance).

View Article and Find Full Text PDF

In the theory of star formation, the first hydrostatic core (FHSC) phase is a critical step in which a condensed object emerges from a prestellar core. This step lasts about one thousand years, a very short time compared with the lifetime of prestellar cores, and therefore is hard to detect unambiguously. We present IRAM Plateau de Bure observations of the Barnard 1b dense molecular core, combining detections of HCO and CHOH spectral lines and dust continuum at 2.

View Article and Find Full Text PDF

The interstellar medium is known to be chemically complex. Organic molecules with up to 11 atoms have been detected in the interstellar medium, and are believed to be formed on the ices around dust grains. The ices can be released into the gas-phase either through thermal desorption, when a newly formed star heats the medium around it and completely evaporates the ices; or through non-thermal desorption mechanisms, such as photodesorption, when a single far-UV photon releases only a few molecules from the ices.

View Article and Find Full Text PDF

Hydrides represent the first steps of interstellar chemistry. Sulfanylium (SH(+)), in particular, is a key tracer of energetic processes. We used ALMA and the IRAM 30 m telescope to search for the lowest frequency rotational lines of SH(+) toward the Orion Bar, the prototypical photo-dissociation region illuminated by a strong UV radiation field.

View Article and Find Full Text PDF