Dopaminergic (DA) neurons exhibit significant diversity characterized by differences in morphology, anatomical location, axonal projection pattern, and selective vulnerability to disease. More recently, scRNAseq has been used to map DA neuron diversity at the level of gene expression. These studies have revealed a higher than expected molecular diversity in both mouse and human DA neurons.
View Article and Find Full Text PDFTwo-dimensional neuronal cultures have a limited ability to recapitulate the in vivo environment of the brain. Here, we introduce a three-dimensional in vitro model for human glia-to-neuron conversion, surpassing the spatial and temporal constrains of two-dimensional cultures. Focused on direct conversion to induced dopamine neurons (iDANs) relevant to Parkinson disease, the model generates functionally mature iDANs in 2 weeks and allows long-term survival.
View Article and Find Full Text PDFCell replacement therapies for Parkinson's disease (PD) based on transplantation of pluripotent stem cell-derived dopaminergic neurons are now entering clinical trials. Here, we present quality, safety, and efficacy data supporting the first-in-human STEM-PD phase I/IIa clinical trial along with the trial design. The STEM-PD product was manufactured under GMP and quality tested in vitro and in vivo to meet regulatory requirements.
View Article and Find Full Text PDFCell therapy for Parkinson's disease has experienced substantial growth in the past decades with several ongoing clinical trials. Despite increasing refinement of differentiation protocols and standardization of the transplanted neural precursors, the transcriptomic analysis of cells in the transplant after its full maturation has not been thoroughly investigated. Here, we present spatial transcriptomics analysis of fully differentiated grafts in their host tissue.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) are intrinsically able to self-organize into cerebral organoids that mimic features of developing human brain tissue. These three-dimensional structures provide a unique opportunity to generate cytoarchitecture and cell-cell interactions reminiscent of human brain complexity in a dish. However, current brain organoid methodologies often result in intra-organoid variability, limiting their use in recapitulating later developmental stages as well as in disease modeling and drug discovery.
View Article and Find Full Text PDFSignificant efforts are ongoing to develop refined differentiation protocols to generate midbrain dopamine (DA) neurons from pluripotent stem cells for application in disease modeling, diagnostics, drug screening and cell-based therapies for Parkinson's disease. An increased understanding of the timing and molecular mechanisms that promote the generation of distinct subtypes of human midbrain DA during development will be essential for guiding future efforts to generate molecularly defined and subtype-specific DA neurons from pluripotent stem cells. Here, we use droplet-based single-cell RNA sequencing to transcriptionally profile the developing human ventral midbrain (VM) when the DA neurons are generated (6-11 weeks post-conception) and their subsequent differentiation into functional mature DA neurons in primary fetal 3D organoid-like cultures.
View Article and Find Full Text PDFWe have developed an efficient approach to generate functional induced dopaminergic (DA) neurons from adult human dermal fibroblasts. When performing DA neuronal conversion of patient fibroblasts with idiopathic Parkinson's disease (PD), we could specifically detect disease-relevant pathology in these cells. We show that the patient-derived neurons maintain age-related properties of the donor and exhibit lower basal chaperone-mediated autophagy compared with healthy donors.
View Article and Find Full Text PDFCharacterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues.
View Article and Find Full Text PDFHuntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics.
View Article and Find Full Text PDFThree-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain.
View Article and Find Full Text PDFHuman midbrain dopamine (DA) neurons are a heterogeneous group of cells that share a common neurotransmitter phenotype and are in close anatomical proximity but display different functions, sensitivity to degeneration, and axonal innervation targets. The A9 DA neuron subtype controls motor function and is primarily degenerated in Parkinson's disease (PD), whereas A10 neurons are largely unaffected by the condition, and their dysfunction is associated with neuropsychiatric disorders. Currently, DA neurons can only be reliably classified on the basis of topographical features, including anatomical location in the midbrain and projection targets in the forebrain.
View Article and Find Full Text PDFPartially unfolded alpha-lactalbumin forms the oleic acid complex HAMLET, with potent tumoricidal activity. Here we define a peptide-based molecular approach for targeting and killing tumor cells, and evidence of its clinical potential (ClinicalTrials.gov NCT03560479).
View Article and Find Full Text PDFDopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) represent a renewable and available source of cells useful for understanding development, developing disease models, and stem-cell therapies for Parkinson's disease (PD). To assess the utility of stem cell cultures as an in vitro model system of human DA neurogenesis, we performed high-throughput transcriptional profiling of ~20,000 ventral midbrain (VM)-patterned stem cells at different stages of maturation using droplet-based single-cell RNA sequencing (scRNAseq). Using this dataset, we defined the cellular composition of human VM cultures at different timepoints and found high purity DA progenitor formation at an early stage of differentiation.
View Article and Find Full Text PDFBackground: Diabetes is presently classified into two main forms, type 1 and type 2 diabetes, but type 2 diabetes in particular is highly heterogeneous. A refined classification could provide a powerful tool to individualise treatment regimens and identify individuals with increased risk of complications at diagnosis.
Methods: We did data-driven cluster analysis (k-means and hierarchical clustering) in patients with newly diagnosed diabetes (n=8980) from the Swedish All New Diabetics in Scania cohort.
To capture immediate cellular changes during diet-induced expansion of adipocyte cell volume and number, we characterized mature adipocytes during a short-term high-fat diet (HFD) intervention. Male C57BL6/J mice were fed chow diet, and then switched to HFD for 2, 4, 6 or 14 days. Systemic glucose clearance was assessed by glucose tolerance test.
View Article and Find Full Text PDFDysregulation of gene expression in islets from patients with type 2 diabetes (T2D) might be causally involved in the development of hyperglycemia, or it could develop as a consequence of hyperglycemia (i.e., glucotoxicity).
View Article and Find Full Text PDFObjectives: The aim of this research is to study education, income and immigration as risk factors for high hemoglobin A1c (HbA1c >70 mmol/mol (8.6%)) when diagnosed with type 2 diabetes (T2D) or latent autoimmune diabetes in the adult (LADA).
Research Design And Methods: Patients were included from the All New Diabetics in Scania study (2008-2013).
Biochem Biophys Res Commun
September 2017
High blood glucose triggers the release of insulin from pancreatic beta cells, but if chronic, causes cellular stress, partly due to impaired Ca homeostasis. Ca influx is controlled by voltage-gated calcium channels (Ca) and high density of Ca in the plasma membrane could lead to Ca overload. Trafficking of the pore-forming Caα subunit to the plasma membrane is regulated by auxiliary subunits, such as the Caβ subunit.
View Article and Find Full Text PDFCa-sensor proteins are generally implicated in insulin release through SNARE interactions. Here, secretagogin, whose expression in human pancreatic islets correlates with their insulin content and the incidence of type 2 diabetes, is shown to orchestrate an unexpectedly distinct mechanism. Single-cell RNA-seq reveals retained expression of the TRP family members in β-cells from diabetic donors.
View Article and Find Full Text PDFLatent autoimmune diabetes in adults (LADA) usually refers to GAD65 autoantibodies (GADAb)-positive diabetes with onset after 35 years of age and no insulin treatment within the first 6 months after diagnosis. However, it is not always easy to distinguish LADA from type 1 or type 2 diabetes. In this study, we examined whether metabolite profiling could help to distinguish LADA ( = 50) from type 1 diabetes ( = 50) and type 2 diabetes ( = 50).
View Article and Find Full Text PDFJ Clin Endocrinol Metab
December 2016
Context: Adhesion G protein-coupled receptor (GPCR)-G1 (ADGRG1) is the most abundant GPCR in human pancreatic islets, but its role in islet function is unclear.
Objective: Investigate how ADGRG1 expression and activation by its ligand, collagen III, impacts β-cell function in normal and type 2 diabetic (T2D) islets.
Design: Genes associated with the ADGRG1 in human islets was probed by RNA-sequencing of human pancreatic islet isolated from cadaveric donors, followed by functional studies on β-cell proliferation, apoptosis, and insulin secretion in human and mouse islets and in INS-1 cells.
Purpose: To study prevalence of diabetic retinopathy (DR) at diagnosis (DRAD) and to estimate contributing risk by sociodemographic, cardiovascular and metabolic characteristics present in patients recently diagnosed with type 2 diabetes (T2D) or latent autoimmune diabetes in the adult (LADA).
Methods: Patients (n=2174) recently diagnosed T2D (93%) or LADA (7%) were included upon arrival for their baseline DR screening. Fundus photographs of 4902 eyes were graded by a senior ophthalmologist according to the International Diabetic Retinopathy Disease Severity Scale.