Mechanistic target of rapamycin (mTOR)-signaling is one key driver of glioblastoma (GBM), facilitating tumor growth by promoting the shift to an anti-inflammatory, pro-cancerogenic microenvironment. Even though mTOR inhibitors such as rapamycin (RAPA) have been shown to interfere with GBM disease progression, frequently chaperoned toxic drug side effects urge the need for developing alternative or supportive treatment strategies. Importantly, previous work document that taste-immune associative learning with RAPA may be utilized to induce learned pharmacological placebo responses in the immune system.
View Article and Find Full Text PDFPsychiatric symptoms as seen in affective and anxiety disorders frequently appear during glioblastoma (GBM) treatment and disease progression, additionally deteriorate patient's daily life routine. These central comorbidities are difficult to recognize and the causes for these effects are unknown. Since overactivation of mechanistic target of rapamycin (mTOR)- signaling is one key driver in GBM growth, the present study aimed at examining in rats with experimentally induced GBM, neurobehavioral consequences during disease progression and therapy.
View Article and Find Full Text PDFIn this contribution, we investigate the use of holographic optical elements (HOEs) as progressive addition lenses (PALs). We design HOEs with high diffraction efficiency (DE) using the Fourier Modal Method (FMM) and optimize an optical system comprising two of these HOEs to fulfill the optical function of a 2 diopter (dpt) PAL. The resulting design is a holographic PAL (hPAL) exhibiting high DE and limited angular color error (CE) with a distribution of spherical power and astigmatism equivalent to its refractive counterpart.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
August 2018
The electric field at the output of an optical system is in general affected by both aberrations and diffraction. Many simulation techniques treat the two phenomena separately, using a geometrical propagator to calculate the effects of aberrations and a wave-optical propagator to simulate the effects of diffraction. We present a ray-based simulation method that accounts for the effects of both aberrations and diffraction within a single framework.
View Article and Find Full Text PDFWe present a method for simulating multiple diffraction in imaging systems based on the Huygens-Fresnel principle. The method accounts for the effects of both aberrations and diffraction and is entirely performed using Monte Carlo ray tracing. We compare the results of this method to those of reference simulations for field propagation through optical systems and for the calculation of point spread functions.
View Article and Find Full Text PDFWe demonstrate that a high-numerical-aperture photonic crystal fiber allows lensless focusing at an unparalleled resolution by complex wavefront shaping. This paves the way toward high-resolution imaging exceeding the capabilities of imaging with multi-core single-mode optical fibers. We analyze the beam waist and power in the focal spot on the fiber output using different types of fibers and different wavefront shaping approaches.
View Article and Find Full Text PDFWe performed theoretical and experimental investigations of the magnetic properties of metamaterials based on asymmetric double-wire structures. Using the multipole model for the description of metamaterials, we investigated the influence of the geometrical asymmetry of the structure on the macroscopic effective parameters. The results show that the larger wire in the system dominates the dynamics of the structure and defines the orientation and the strength of the microscopic currents.
View Article and Find Full Text PDFWe study the physics of a new type of subwavelength nanocavities. They are based on U-shaped metal-insulator-metal waveguides supporting the excitation of surface plasmon polaritons. The nanocavity arrays are excited by plane waves at either a normal or oblique incidence.
View Article and Find Full Text PDFWe introduce a technique to decompose the scattered near field of two-dimensional arbitrary metaatoms into its multipole contributions. To this end we expand the scattered field upon plane wave illumination into cylindrical harmonics as known from Mie's theory. By relating these cylindrical harmonics to the field radiated by Cartesian multipoles, the contribution of the lowest order electric and magnetic multipoles can be identified.
View Article and Find Full Text PDFIn general, the electromagnetic mechanism is understood as the strongest contribution to the overall surface-enhanced Raman spectroscopy (SERS) enhancement. Due to the excitation of surface plasmons, a strong electromagnetic field is induced at the interfaces of a metallic nanoparticle leading to a drastic enhancement of the Raman scattering cross-section. Furthermore, the Raman scattered light expierences an emission enhancement due to the plasmon resonances of the nanoantennas.
View Article and Find Full Text PDFWe report that rhomb-shaped metal nanoantenna arrays support multiple plasmonic resonances, making them favorable bio-sensing substrates. Besides the two localized plasmonic dipole modes associated with the two principle axes of the rhombi, the sample supports an additional grating-induced surface plasmon polariton resonance. The plasmonic properties of all modes are carefully studied by far-field measurements together with numerical and analytical calculations.
View Article and Find Full Text PDFSurface-enhanced Raman scattering (SERS) is a potent tool in bioanalytical science because the technique combines high sensitivity with molecular specificity. However, the widespread and routine use of SERS in quantitative biomedical diagnostics is limited by tight requirements on the reproducibility of the noble metal substrates used. To solve this problem, we recently introduced a novel approach to reproducible SERS substrates.
View Article and Find Full Text PDFWe explain the origin of the electric and particular the magnetic polarizabiltiy of metamaterials employing a fully electromagnetic plasmonic picture. As example we study an U-shaped split-ring resonator based metamaterial at optical frequencies. The relevance of the split-ring resonator orientation relative to the illuminating field for obtaining a strong magnetic response is outlined.
View Article and Find Full Text PDF