This work presents a new approach to enhance EMI shielding efficiency of nanocomposites of dielectric polymers, multiwalled carbon nanotubes (MWCNTs) and intrinsically conducting polymers for account of using core-shell morphology for conducting components. To realize this approach new ternary nanocomposites of poly(vinylidene fluoride) (PVDF), MWCNTs and poly(3-methylthiophene) doped by Cl anions (P3MT) were prepared through synthesis of thermally stable core/shell nanocomposites PVDF/P3MT and MWCNT/P3MT. These binary nanocomposites were mixed with pure MWCNTs or PVDF followed by compression molding to prepare the ternary nanocomposites of different morphology to discriminate their EMI shielding properties in a wide frequency range (1-67 GHz).
View Article and Find Full Text PDFInAs nanowires (NWs) are recognized as a key material due to their unique transport properties. Despite remarkable progress in designing InAs NW device structures, there are still open questions on device variability. Here, we demonstrate that noise spectroscopy allows us to study not only the parameters of traps, but also to shed light on quantum transport in NW structures.
View Article and Find Full Text PDFWe fabricate two-layer (TL) silicon nanowires (NW) field-effect transistors (FETs) with a liquid gate. The NW devices show advanced characteristics, which reflect reliable single-electron phenomena. A strong modulation effect of channel conductivity with effectively tuned parameters is revealed.
View Article and Find Full Text PDFDevices with metallic nanoconstrictions functionalized by organic molecules are promising candidates for the role of functional devices in molecular electronics. However, at the moment little is known about transport and noise properties of nanoconstriction devices of this kind. In this paper, transport properties of bare gold and molecule-containing tunable cross-section nanoconstrictions are studied using low-frequency noise spectroscopy.
View Article and Find Full Text PDFLiquid-gated Si nanowire field-effect transistor (FET) biosensors are fabricated using a complementary metal-oxide-semiconductor-compatible top-down approach. The transport and noise properties of the devices reflect the high performance of the FET structures, which allows label-free detection of cardiac troponin I (cTnI) molecules. Moreover, after removing the troponin antigens the structures demonstrate the same characteristics as before cTnI detection, indicating the reusable operation of biosensors.
View Article and Find Full Text PDFIn the present study, transport properties and single trap phenomena in silicon nanowire (NW) field-effect transistors (FETs) are reported. The dynamic behavior of drain current in NW FETs studied before and after gamma radiation treatment deviates from the predictions of the Shockley-Read-Hall model and is explained by the concept taking into account an additional energy barrier in the accumulation regime. It is revealed that dynamics of charge exchange processes between single trap and nanowire channel strongly depend on gamma radiation treatment.
View Article and Find Full Text PDFWe studied space-charge-distribution phenomena in planar GaN nanowires and nanoribbons (NRs). The results obtained at low voltages demonstrate that the electron concentration changes not only at the edges of the NR, but also in the middle part of the NR. The effect is stronger with decreasing NR width.
View Article and Find Full Text PDFTrapping-detrapping processes in nanostructures are generally considered to be destabilizing factors. However, we discovered a positive role for a single trap in the registration and transformation of useful signal. We use switching kinetics of current fluctuations generated by a single trap in the dielectric of liquid-gated nanowire field effect transistors (FETs) as a basic principle for a novel highly sensitive approach to monitor the gate surface potential.
View Article and Find Full Text PDFWe employ noise spectroscopy and transconductance measurements to establish the optimal regimes of operation for our fabricated silicon nanowire field-effect transistors (Si NW FETs) sensors. A strong coupling between the liquid gate and back gate (the substrate) has been revealed and used for optimization of signal-to-noise ratio in subthreshold as well as above-threshold regimes. Increasing the sensitivity of Si NW FET sensors above the detection limit has been predicted and proven by direct experimental measurements.
View Article and Find Full Text PDFWe report on the influence of low gamma irradiation (10(4) Gy) on the noise properties of individual carbon nanotube (CNT) field-effect transistors (FETs) with different gate configurations and two different dielectric layers, SiO2 and Al2O3. Before treatment, strong generation-recombination (GR) noise components are observed. These data are used to identify several charge traps related to dielectric layers of the FETs by determining their activation energy.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2006
The behavior of clusters formed by magnetic particles of magnetic liquid placed into a cylindrical capillary tube in magnetic field is described. Spicular clusters are formed from the sediment at the application of a magnetic field. They arrange themselves along the capillary repeating the direction of external magnetic field.
View Article and Find Full Text PDF