Publications by authors named "Petru Palade"

Featuring a high hydrogen storage content of up to 20 wt%, complex metal borohydrides remain promising solid state hydrogen storage materials, with the real prospect of reversible behavior for a zero-emission economy. However, the thermodynamic barriers and sluggish kinetics are still barriers to overcome. In this context, nanoconfinement has provided a reliable method to improve the behavior of hydrogen storage materials.

View Article and Find Full Text PDF

This study presents the functionalization and characterization of graphene and electromagnetic interference (EMI) attenuation capacity in epoxy-nanocomposites. The modification of graphene involved both small molecules and polymers for compatibilization with epoxy resin components to provide EMI shielding. The TGA and RAMAN analyses confirmed the synthesis of graphene with a different layer thickness of the graphene sheets.

View Article and Find Full Text PDF

The influence of waste glass and red mud addition as alternative source of aluminosilicate precursors on the microstructural, mechanical, and leaching properties of bottom ash-based geopolymer was studied in this work through mineralogical, morphological, and spectroscopic analysis, as well as by conducting compressive strength and leaching tests. The bottom ash-based geopolymer composites were synthesized by adding a constant amount of waste glass (10% by weight) and increasing amounts of red mud (up to 30% by weight). The results derived from FTIR, Si and Al MAS NMR, and SEM-EDX revealed that adding up to 10% (by weight) red mud to the synthesis mixes leads to an increase in the degree of geopolymerization of the activated mixes.

View Article and Find Full Text PDF

A facile and cheap surfactant-assisted hydrothermal method was used to prepare mesoporous cobalt ferrite nanosystems with BET surface area up to 151 m/g. These mesostructures with high BET surface areas and pore sizes are made from assemblies of nanoparticles (NPs) with average sizes between 7.8 and 9.

View Article and Find Full Text PDF