Publications by authors named "Petrow-Sadowski C"

Chronic fatigue syndrome (CFS) is a debilitating disease of unknown etiology that is estimated to affect 17 million people worldwide. Studying peripheral blood mononuclear cells (PBMCs) from CFS patients, we identified DNA from a human gammaretrovirus, xenotropic murine leukemia virus-related virus (XMRV), in 68 of 101 patients (67%) as compared to 8 of 218 (3.7%) healthy controls.

View Article and Find Full Text PDF

Little is known about the transmission or tropism of the newly discovered human retrovirus, human T-cell lymphotropic virus type 3 (HTLV-3). Here, we examine the entry requirements of HTLV-3 using independently expressed Env proteins. We observed that HTLV-3 surface glycoprotein (SU) binds efficiently to both activated CD4(+) and CD8(+) T cells.

View Article and Find Full Text PDF

Human T-cell lymphotropic virus type 1 (HTLV-1) entry involves the interaction between the surface (SU) subunit of the Env proteins and cellular receptor(s). Previously, our laboratories demonstrated that heparan sulfate proteoglycans (HSPGs) and neuropilin-1 (NRP-1), a receptor of VEGF(165), are essential for HTLV-1 entry. Here we investigated whether, as when binding VEGF(165), HSPGs and NRP-1 work in concert during HTLV-1 entry.

View Article and Find Full Text PDF

Cell-free human T-lymphotropic virus type 1 (HTLV-1) virions are poorly infectious in vitro for their primary target cells, CD4(+) T cells. Here, we show that HTLV-1 can efficiently infect myeloid and plasmacytoid dendritic cells (DCs). Moreover, DCs exposed to HTLV-1, both before and after being productively infected, can rapidly, efficiently and reproducibly transfer virus to autologous primary CD4(+) T cells.

View Article and Find Full Text PDF

Smad and MAPK signaling cascades are involved in erythroid and megakaryocytic differentiation. The inhibitory Smad for TGF-beta/activin signaling, Smad7, may directly or indirectly affect these signaling pathways. By modulating Smad7 expression, we attempted to delineate the relevance of Smad7 during erythro-megakaryocytic (E/M) differentiation of human erythroleukemia cells.

View Article and Find Full Text PDF

Studies using adherent cell lines have shown that glucose transporter-1 (GLUT-1) can function as a receptor for human T-cell leukemia virus type 1 (HTLV). In primary CD4(+) T cells, heparan sulfate proteoglycans (HSPGs) are required for efficient entry of HTLV-1. Here, the roles of HSPGs and GLUT-1 in HTLV-1 and HTLV-2 Env-mediated binding and entry into primary T cells were studied.

View Article and Find Full Text PDF

Heparan sulfate proteoglycans (HSPGs) are used by a number of viruses to facilitate entry into host cells. For the retrovirus human T-cell leukemia virus type 1 (HTLV-1), it has recently been reported that HSPGs are critical for efficient binding of soluble HTLV-1 SU and the entry of HTLV pseudotyped viruses into non-T cells. However, the primary in vivo targets of HTLV-1, CD4(+) T cells, have been reported to express low or undetectable levels of HSPGs.

View Article and Find Full Text PDF

The retrovirus human T cell leukemia virus (HTLV) type I (HTLV-I) is primarily transmitted by breast-feeding or sexual contact, by cell-to-cell contact between T cells. TGF-beta, which has been shown to enhance transmission of HTLV-I in vitro, is found at high levels in breast milk and semen. In this study, the ability of TGF-beta to regulate expression of molecules involved in HTLV-I binding and entry was examined.

View Article and Find Full Text PDF

HIV-1 infection leads to a disease that attacks the central regulatory mechanisms of the immune response. As mucosal tissue is one of the primary sites infected with HIV in vivo, we examined the effects of HIV exposure on human mast cells, important components of mucosal defense. Using the human mast cell line, HMC-1, which expresses CXCR4 but not CCR5 on the cell surface, we found that several HIV-1 X4 tropic lab (IIIB, RF) and primary isolates but not R5 (BAL, ADA) isolates productively infected these cells.

View Article and Find Full Text PDF

Transforming growth factor (TGF)-beta1 exerts autocrine and paracrine effects on hematopoiesis. Here, we have attempted to evaluate the effect of endogenous TGF-beta1 on early erythroid development from primitive human hematopoietic stem cells (HSCs) and to assess the effects of TGF-beta1 on different phases of erythropoiesis. Cord blood CD34(+)CD38(-) lineage-marker-negative (Lin(-)) cells were cultured in serum-free conditions using various combinations of stem cell factor (SCF), erythropoietin (Epo), and TGF-beta-neutralizing antibody.

View Article and Find Full Text PDF

Little is known about the requirements for human T-cell leukemia virus type I (HTLV-I) entry, including the identity of the cellular receptor(s). Recently, we have generated an HTLV-I surface glycoprotein (SU) immunoadhesin, HTSU-IgG, which binds specifically to cell-surface protein(s) critical for HTLV-I-mediated entry in cell lines. Here, expression of the HTLV-I SU binding protein on primary cells of the immune system was examined.

View Article and Find Full Text PDF

Little is known about the requirements for human T-cell leukemia virus type 1 (HTLV-1) entry, including the identity of the cellular receptor(s). Previous studies have shown that although the HTLV receptor(s) are widely expressed on cell lines of various cell types from different species, cell lines differ dramatically in their susceptibility to HTLV-Env-mediated fusion. Human cells (293, HeLa, and primary CD4(+) T cells) showed higher levels of binding at saturation than rodent (NIH 3T3 and NRK) cells to an HTLV-1 SU immunoadhesin.

View Article and Find Full Text PDF

DNA methylation, by regulating the transcription of genes, is a major modifier of the eukaryotic genome. DNA methyltransferases (DNMTs) are responsible for both maintenance and de novo methylation. We have reported that human immunodeficiency virus type 1 (HIV-1) infection increases DNMT1 expression and de novo methylation of genes such as the gamma interferon gene in CD4(+) cells.

View Article and Find Full Text PDF