Publications by authors named "Petroski R"

Studies using acute or subchronic pharmacological inhibition of phosphodiesterase 2 A (PDE2A) have led to its proposal as a target for treatment of cognitive deficits associated with neuropsychiatric and neurodegenerative disease. However, the impact of continuous inhibition of PDE2A on memory is unknown. Moreover, the neuroanatomical regions mediating memory enhancement have not been categorically identified.

View Article and Find Full Text PDF
Article Synopsis
  • * Research shifted to azetidine-based inhibitors, with a notable compound (Compound 26) found to boost cerebrospinal fluid levels of glycine and show similar effectiveness to Bitopertin in rats.
  • * Compound 26 also improved memory performance in two behavioral tests after specific doses, indicating its potential as a cognitive enhancer.
View Article and Find Full Text PDF

We report here the identification and optimization of a novel series of potent GlyT1 inhibitors. A ligand design campaign that utilized known GlyT1 inhibitors as starting points led to the identification of a novel series of pyrrolo[3,4- c]pyrazoles amides (21-50) with good in vitro potency. Subsequent optimization of physicochemical and in vitro ADME properties produced several compounds with promising pharmacokinetic profiles.

View Article and Find Full Text PDF

A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG.

View Article and Find Full Text PDF

The braconid wasp, Spathius agrili, has been released in the U.S. as a biocontrol agent for the invasive emerald ash borer (Coleoptera: Buprestidae: Agrilus planipennis), a destructive pest of ash trees (Fraxinus spp.

View Article and Find Full Text PDF

The structure-activity relationships of 2-(piperidin-3-yl)-1H-benzimidazoles, 2-morpholine and 2-thiomorpholin-2-yl-1H-benzimidazoles are described. In the lead optimization process, the pK(a) and/or logP of benzimidazole analogs were reduced either by attachment of polar substituents to the piperidine nitrogen or incorporation of heteroatoms into the piperidine heterocycle. Compounds 9a and 9b in the morpholine series and 10g in the thiomorpholine series demonstrated improved selectivity and CNS profiles compared to lead compound 2 and these are potential candidates for evaluation as sedative hypnotics.

View Article and Find Full Text PDF

Phosphonate reagents were developed for the two-carbon homologation of aldehydes or ketones to unbranched- or methyl-branched α,β-unsaturated aldehydes. The phosphonate reagents, diethyl methylformyl-2-phosphonate dimethylhydrazone and diethyl ethylformyl-2-phosphonate dimethylhydrazone, contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde, followed by removal of the dimethylhydrazone protective group with a biphasic mixture of 1 M HCl and petroleum ether.

View Article and Find Full Text PDF

Analogs of the known H(1)-antihistamine R-dimethindene with suitable selectivity for key GPCRs, P450 enzymes and hERG channel were assessed for metabolism profile and in vivo properties. Several analogs were determined to exhibit diverse metabolism. One of these compounds, 10a, showed equivalent efficacy in a rat EEG/EMG model to a previously identified clinical candidate and a potentially superior pharmacokinetic profile as determined from a human microdose study.

View Article and Find Full Text PDF

A series of 2-(3-aminopiperidine)-benzimidazoles were identified as selective H(1)-antihistamines for evaluation as potential sedative hypnotics. Representative compounds showed improved hERG selectivity over a previously identified 2-aminobenzimidazole series. While hERG activity could be modulated via manipulation of the benzimidazole N1 substituent, this approach led to a reduction in CNS exposure for the more selective compounds.

View Article and Find Full Text PDF

A series of indene analogs of the H(1)-antihistamine (-)-R-dimethindene was evaluated for selectivity in the search for potentially improved sedative-hypnotics. Variation of the 6-substitutent in the indene core in combination with a pendant electron rich heterocycle led to the identification of several potent H(1)-antihistamines with desirable selectivity over CYP enzymes, the M(1) muscarinic receptor and the hERG channel. These compounds were candidates for further ADME profiling and in vivo evaluation.

View Article and Find Full Text PDF

SAR of lead benzothiophene H(1)-antihistamine 2 was explored to identify backup candidates with suitable pharmacokinetic profiles for an insomnia program. Several potent and selective H(1)-antihistamines with a range of projected half-lives in humans were identified. Compound 16d had a suitable human half-life as demonstrated in a human microdose study, but variability in pharmacokinetic profile, attributed to metabolic clearance, prevented further development of this compound.

View Article and Find Full Text PDF

The control of insect pests and invasive weeds has become more species-selective because of activity-guided isolation, structure elucidation, and total synthesis of naturally produced substances with important biological activities. Examples of isolated compounds include insect pheromones, antifeedants, and prostaglandins, as well as growth regulators for plants and insects. Synthetic analogues of natural substances have been prepared to explore the relationships between chemical structure and observed biological activity.

View Article and Find Full Text PDF

Analogues of the known H(1)-antihistamine R-dimethindene were profiled as potential agents for the treatment of insomnia. Several highly selective compounds were efficacious in rodent sleep models. On the basis of overall profile, indene 1d and benzothiophene 2a had pharmacokinetic properties suitable for evaluation in night time dosing.

View Article and Find Full Text PDF

Background: This study assessed quality of life (QOL) in adult survivors of pediatric heart transplantation who survived > or = 10 years after transplantation.

Methods: Prospective data were collected from heart transplant recipients who were aged > or = 18 years and had survived > or = 10 years after transplantation (transplantation between July 3, 1986, and April 4, 1997). QOL data were collected from patients using the Medical Outcomes Study 36-Item Short Form (SF-36) Health Survey.

View Article and Find Full Text PDF

The benzimidazole core of the selective non-brain-penetrating H(1)-antihistamine mizolastine was used to identify a series of brain-penetrating H(1)-antihistamines for the potential treatment of insomnia. Using cassette PK studies, brain-penetrating H(1)-antihistamines were identified and in vivo efficacy was demonstrated in a rat EEG/EMG model. Further optimization focused on strategies to attenuate an identified hERG liability, leading to the discovery of 4i with a promising in vitro profile.

View Article and Find Full Text PDF

In the present article, we report on a strategy to improve the physical properties of a series of small molecule human adenosine 2A (hA2A) antagonists. One of the aromatic rings typical of this series of antagonists is replaced with a series of aliphatic groups, with the aim of disrupting crystal packing of the molecule to lower the melting point and in turn to improve the solubility. Herein, we describe the SAR of a new series of water-soluble 2,4,6-trisubstituted pyrimidines where R1 is an aromatic heterocycle, R2 is a short-chain alkyl amide, and the typical R3 aromatic heterocyclic substituent is replaced with an aliphatic amino substituent.

View Article and Find Full Text PDF

4-Acetylamino-2-(3,5-dimethylpyrazol-1-yl)-pyrimidines bearing substituted pyridyl groups as C-6 substituents were prepared as selective adenosine hA2A receptor antagonists for the treatment of Parkinson's disease. The 5-methoxy-3-pyridyl derivative 6g (hA2A Ki 2.3 nM, hA1 Ki 190 nM) was orally active at 3 mg/kg in a rat HIC model but exposure was poor in nonrodent species, presumably due to poor aqueous solubility.

View Article and Find Full Text PDF

Previously we have described a series of novel A 2A receptor antagonists with excellent water solubility. As described in the accompanying paper, the antagonists were first optimized to remove an unsubstituted furyl moiety, with the aim of avoiding the potential metabolic liabilities that can arise from the presence of an unsubstituted furan. This effort identified a series of potent and selective methylfuryl derivatives.

View Article and Find Full Text PDF

New phosphonate reagents were developed for the two-carbon homologation of aldehydes to methyl- or ethyl-branched unsaturated aldehydes and used in the practical synthesis of (2E,4E,6E,8E)-3,5-dimethyl-7-ethyl-2,4,6,8-undecatetraene (1), a pheromone of the beetle Carpophilus lugubris. The phosphonate reagents, diethyl ethylformyl-2-phosphonate dimethylhydrazone and diethyl 1-propylformyl-2-phosphonate dimethylhydrazone, contained a protected aldehyde group instead of the usual ester group. A homologation cycle entailed condensation of the reagent with the starting aldehyde, followed by removal of the dimethylhydrazone protective group with a biphasic mixture of dilute HCl and petroleum ether.

View Article and Find Full Text PDF

Volatiles from the eggplant flea beetle, Epitrix fuscula Crotch (Coleoptera: Chrysomelidae), feeding on host foliage, were investigated. Six male-specific compounds were detected and were identified through the use of mass spectrometry, nuclear magnetic resonance (NMR) spectrometry, chiral and achiral gas chromatography, high-performance liquid chromatography, electrophysiology (gas chromatography-electroantennography, GC-EAD), and microchemical tests. The two most abundant of the six compounds were (2E,4E,6Z)-2,4,6-nonatrienal (1) and (2E,4E,6E)-2,4,6-nonatrienal (2).

View Article and Find Full Text PDF

The capacity of novel benzopyridazinone-based antagonists to inhibit MCH-R1 function, relative to their affinity for the receptor, has been investigated. Three compounds that differ by the addition of either a chlorine atom, or trifluoromethyl group, have nearly identical receptor affinities; however their abilities to inhibit receptor elicited signaling events, measured as a function of time, are dramatically altered. Both the chlorinated and trifluoromethyl modified compounds have a very slow on-rate to maximal functional inhibition relative to the unmodified base compound.

View Article and Find Full Text PDF

The design, synthesis, and SAR of a series of retro bis-aminopyrrolidine ureas are described. Compounds from this series exhibited potent binding affinity and functional activity at MCH-R1, and good oral bioavailability in rat.

View Article and Find Full Text PDF

Indiplon (NBI 34060) is a novel pyrazolopyrimidine currently in development for the treatment of insomnia. We have previously shown that indiplon exhibits high-affinity binding to native GABA(A) receptors from rat brain and acts as a positive allosteric modulator of GABA(A) receptor currents in cultured rat neurons (Sullivan et al., 2004).

View Article and Find Full Text PDF

Glutamate is the major excitatory neurotransmitter in the central nervous system and is tightly regulated by cell surface transporters to avoid increases in concentration and associated neurotoxicity. Selective blockers of glutamate transporter subtypes are sparse and so knock-out animals and antisense techniques have been used to study their specific roles. Here we used WAY-855, a GLT-1-preferring blocker, to assess the role of GLT-1 in rat hippocampus.

View Article and Find Full Text PDF

In this study, we describe the pharmacological characterization of novel aryl-ether, biaryl, and fluorene aspartic acid and diaminopropionic acid analogs as potent inhibitors of EAAT2, the predominant glutamate transporter in forebrain regions. The rank order of potency determined for the inhibition of human EAAT2 was N(4)-[4-(2-bromo-4,5-difluorophenoxy)phenyl]-L-asparagine (WAY-213613) (IC(50) = 85 +/- 5 nM) > N(4)-(2'-methyl-1,1'-biphenyl-4-yl)-L-asparagine (WAY-213394) (IC(50) = 145 +/- 22 nM) = N(4)-[7-(trifluoromethyl)-9H-fluoren-2-yl]-L-asparagine (WAY-212922) (IC(50) = 157 +/- 11 nM) = 3-{[(4'-chloro-2-methyl-1,1'-biphenyl-4-yl)carbonyl]amino}-L-alanine (WAY-211686) (IC(50) = 190 +/- 10 nM). WAY-213613 was the most selective of the compounds examined, with IC(50) values for inhibition of EAAT1 and EAAT3 of 5 and 3.

View Article and Find Full Text PDF