Publications by authors named "Petros Katapodis"

The demand for cheap, healthy, and sustainable alternative protein sources has turned research interest into microbial proteins. Mycoproteins prevail due to their quite balanced amino acid profile, low carbon footprint and high sustainability potential. The goal of this research was to investigate the capability of to metabolize the main sugars of agro-industrial side streams, such as aspen wood chips hydrolysate, to produce high-value protein with low cost.

View Article and Find Full Text PDF

microalgae biomass was employed for the extraction of valuable bioactive compounds with deep eutectic-based solvents (DESs). Particularly, the Choline Chloride (ChCl) based DESs, ChCl:1,2 butanediol (1:4), ChCl:ethylene glycol (1:2), and ChCl:glycerol (1:2) mixed with water at 70/30 / ratio were used for that purpose. The extracts' total carotenoid (TCC) and phenolic contents (TPC), as well as their antioxidant activity (IC50), were determined within the process of identification of the most efficient solvent.

View Article and Find Full Text PDF

Environmental pollution, greenhouse gas emissions, depletion of fossil fuels, and a growing population have sparked a search for new and renewable energy sources such as biodiesel. The use of waste or residues as substrates for microbial growth can favor the implementation of a biorefinery concept with reduced environmental footprint. Cyanobacteria constitute microorganisms with enhanced ability to use industrial effluents, wastewaters, forest residues for growth, and concomitant production of added-value compounds.

View Article and Find Full Text PDF

A series of polymers, including chitosan (CS), carboxymethylcellulose (CMC) and a chitosan-gelatin (CS-GEL) hybrid polymer, were functionalized with ferulic acid (FA) derived from the enzymatic treatment of arabinoxylan through the synergistic action of two enzymes, namely, xylanase and feruloyl esterase. Subsequently, the ferulic acid served as the substrate for laccase from (AbL) in order to enzymatically functionalize the above-mentioned polymers. The successful grafting of the oxidized ferulic acid products onto the different polymers was confirmed through ultraviolet-visible (UV-Vis) spectroscopy, attenuated total reflectance (ATR) spectroscopy, scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

In this work, we demonstrated the ability of the cyanobacterium sp. to produce ultra-small silver nanoparticlesin the forms of metallic silver (Ag) and silver oxides (AgO) via a facile green synthetic process. The biological compounds in the cyanobacterial cellular extract acted both as reducing agents for silver ions and functional stabilizing agents for the silver nanoparticles.

View Article and Find Full Text PDF

As olive leaves constitute the main by-product of the olive oil industry with important environmental and economic impact, there is an increasing demand for its valorization. In the present work, we report the development and application of immobilized enzyme batch bioreactors for the chemo-enzymatic treatment of an aqueous Olea europaea leaf extract rich in oleuropein to produce an extract enriched in hydroxytyrosol and other oleuropein hydrolysis products. To this end, a robust biocatalyst was developed through the immobilization of β-glucosidase on chitosan-coated magnetic beads which exhibited high hydrolytic stability after 240 h of incubation at 37 °C.

View Article and Find Full Text PDF
Article Synopsis
  • - Germanane (GeH) is a promising material similar to graphane, known for its interesting optoelectronic properties, but its environmental and biological impacts haven't been well studied.
  • - Researchers have developed a simple method, using Langmuir-Schaefer deposition, to create uniform GeH monolayer films on different surfaces.
  • - This study is the first to explore the antibacterial properties of GeH, revealing that it effectively combats both Gram-negative and Gram-positive bacteria, suggesting potential new applications for this material.
View Article and Find Full Text PDF

Nowadays, the shelf-life extension of foods is a topic of major interest because of its environmental and economic benefits. For this purpose, various methods like deep-freezing, ultra-high-temperature pasteurization, drying methods, use of chemicals, controlled-atmosphere preservation, ionizing irradiation, and were investigated. During the last years, the smart packaging for foods using natural biodegradable components is of great interest because it provides positive environmental fingerprint and high shelf-life extension.

View Article and Find Full Text PDF

Microorganisms are known to be natural oil producers in their cellular compartments. Microorganisms that accumulate more than 20% of lipids on a cell dry weight basis are considered as oleaginous microorganisms. These are capable of synthesizing vast majority of fatty acids from short hydrocarbonated chain (C6) to long hydrocarbonated chain (C36), which may be saturated (SFA), monounsaturated (MUFA), or polyunsaturated fatty acids (PUFA), depending on the presence and number of double bonds in hydrocarbonated chains.

View Article and Find Full Text PDF

Environmentally friendly ionic solvents such as (a) ionic liquids (ILs) formulated with hydroxyl ammonium cations and various carboxylic acid anions and (b) choline chloride or ethyl ammonium chloride-based deep eutectic solvents (DES) were tested as media for hydrolytic and synthetic reactions catalysed by lipase-inorganic hybrid nanoflowers. The nature of ionic solvents used has a significant effect on the hydrolytic and synthetic activity of the immobilized lipase, as well as on its stability and reusability. In choline chloride-based DES, the activity and especially the operational stability of the biocatalyst are significantly increased compared to those observed in buffer, indicating the potential application of these solvents as green media for various biocatalytic processes of industrial interest.

View Article and Find Full Text PDF

In the current study low molecular weight poly(vinylalcohol) (PVOH) was used to prepare chitosan/PVOH blends and chitosan/PVOH/montmorillonite nanocomposites via a reflux - solution - heat pressing method. The effect of PVOH content and montmorillonite type (hydrophylic vs. organically modified) on the morphology, mechanical, thermomechanical, barrier and antimicrobial properties of the obtained polymer blends and nanocomposite films was studied.

View Article and Find Full Text PDF

In this study we report the ability of reduced and non-reduced graphene oxide-based nanomaterials (GONs), modified with variable alkyl chain length and terminal functional groups, to act as effective scaffolds for the immobilization of cytochrome c (cyt c) using different immobilization procedures. The GONs/cyt c conjugates are characterized by a combination of techniques, namely atomic force microscopy, X-ray photoelectron and FT-IR spectroscopies as well as thermo-gravimetric and differential thermal analysis. The effect of the structure of functional groups and the surface chemistry of GONs on the immobilization efficiency, the peroxidase activity and the stability of the cyt c was investigated and correlated with conformational changes on the protein molecule upon immobilization.

View Article and Find Full Text PDF

The enzymatic degradation of polysaccharides to monosaccharides is an essential step in bioconversion processes of lignocellulosic materials. Alkali treated brewers spent grain was used as a model substrate for the study of cellulose and hemicellulose hydrolysis by Fusarium oxysporum enzyme extract. The results obtained showed that cellulose and hemicellulose conversions are not affected by the same factors, implementing different strategies for a successful bioconversion.

View Article and Find Full Text PDF

The potential use of Thermomyces lanuginosus xylanase to develop a pressure-temperature-time integrator (PTTI) for high pressure processing was investigated. The combined effect of pressure and temperature on the inactivation of xylanase was studied in the pressure range of 100 to 600 MPa and temperature range of 50 to 70 degrees C. A synergistic effect of pressure and temperature was observed.

View Article and Find Full Text PDF

The crude multienzyme extract produced by Fusarium oxysporum cultivated under submerged conditions in 20 L bioreactor using brewers spent grain and corn cobs in a ratio 2:1 as the carbon source was evaluated with regard to an efficient saccharification of hydrothermally treated wheat straw. Several factors concerning the obtained hydrolysis yield and reaction rate were investigated. The takeout of product sugars (in situ) was effective at reducing end-product inhibition and lead to a bioconversion about 80% of the theoretical.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on optimizing ethanol production using the fungus Neurospora crassa from banana ground (BG) by improving lignocellulose-degrading enzyme production.
  • Solid-state cultivation (SSC) was implemented in a horizontal bioreactor with a specific medium ratio and moisture level, leading to efficient production of key enzymes like xylanase and endoglucanase.
  • The research achieved a yield of approximately 74 grams of ethanol per kilogram of dry BG, indicating successful optimization of the ethanol production process under set conditions.
View Article and Find Full Text PDF

Toxicity and metabolism of para-chlorophenol (p-CP) in the marine microalga Tetraselmis marina have been studied. The inhibition constant EC(50) for p-CP was 272+/-17 microM (34.8+/-2.

View Article and Find Full Text PDF

Xenobiotic chlorinated phenols have been found in fresh and marine waters and are toxic to many aquatic organisms. Metabolism of 2,4-dichlorophenol (2,4-DCP) in the marine microalga Tetraselmis marina was studied. The microalga removed more than 1mM of 2,4-DCP in a 2l photobioreactor over a 6 day period.

View Article and Find Full Text PDF

Neutral and acidic oligosaccharides were obtained from birchwood xylan by treatment with an endoxylanase, family 11 class, from Sporotrichum thermophile. The main acidic xylooligosaccharide (aldopentauronic acid) was separated from the hydrolysate by anion-exchange and size-exclusion chromatography and the structure was determined by 13C NMR spectroscopy. The aldopentauronic acid yield was 25% (w/w) of the total solubilized sugars.

View Article and Find Full Text PDF

Background: Main cereals such as rice, wheat, barley, and corn belong to the family Gramineae and have similar cell-wall composition. Since cereal cell walls are a good source of dietary fibre, meeting one-half of the daily requirement of 30 g of dietary fibre can be achieved by the regular consumption of cereals. Many studies have dealt with the isolation of feruloylated oligosaccharides from Gramineae by treatment with polysaccharide hydrolysing enzymes.

View Article and Find Full Text PDF