We quantified the concentrations of two little-studied brominated pollutants, 1,3,5-tribromobenzene (TBB) and 4-bromobiphenyl (4BBP), in the deep water column and sediments of Lake Geneva. We found aqueous concentrations of 625 ± 68 pg L for TBB and 668 ± 86 pg L for 4BBP over a depth range of 70-191.5 m (near-bottom depth), based on duplicate measurements taken at five depths during three separate 1 month sampling periods at our sampling site near Vidy Bay.
View Article and Find Full Text PDFWe report the development and validation of a method to detect and quantify diverse nonpolar halogenated micropollutants in wastewater treatment plant (WWTP) influent, effluent, primary sludge, and secondary sludge matrices (including both the liquid and particle phases) by comprehensive two-dimensional gas chromatography (GC×GC) coupled to micro- electron capture detector (μECD). The 59 target analytes included toxaphenes, polychlorinated naphthalenes, organochlorine pesticides, polychlorinated biphenyls, polybrominated diphenyl ethers, and emerging persistent and bioaccumulative chemicals. The method is robust for a wide range of nonpolar halogenated micropollutants in all matrices.
View Article and Find Full Text PDFComprehensive two-dimensional gas chromatography (GC×GC) is used widely to separate and measure organic chemicals in complex mixtures. However, approaches to quantify analytes in real, complex samples have not been critically assessed. We quantified 7 PAHs in a certified diesel fuel using GC×GC coupled to flame ionization detector (FID), and we quantified 11 target chlorinated hydrocarbons in a lake water extract using GC×GC with electron capture detector (μECD), further confirmed qualitatively by GC×GC with electron capture negative chemical ionization time-of-flight mass spectrometer (ENCI-TOFMS).
View Article and Find Full Text PDFComprehensive two-dimensional gas chromatography (GC × GC) is effective for separating and quantifying nonpolar organic chemicals in complex mixtures. Here we present a model to estimate 11 environmental partitioning properties for nonpolar analytes based on GC × GC chromatogram retention time information. The considered partitioning properties span several phases including pure liquid, air, water, octanol, hexadecane, particle natural organic matter, dissolved organic matter, and organism lipids.
View Article and Find Full Text PDFComprehensive two-dimensional gas chromatography (GC × GC) chromatograms typically exhibit run-to-run retention time variability. Chromatogram alignment is often a desirable step prior to further analysis of the data, for example, in studies of environmental forensics or weathering of complex mixtures. We present a new algorithm for aligning whole GC × GC chromatograms.
View Article and Find Full Text PDFQuantitative structure-activity relationships (QSARs) were developed for three Monod-type parameters--qmax, Ks, and qmax/Ks--that express the kinetics of polycyclic aromatic hydrocarbon (PAH) biotransformation by Sphingomonas paucimobilis strain EPA505. The training sets contained high-quality experimental values of the kinetic parameters for 20 unsubstituted and methylated PAHs as well as values of 41 meaningful molecular descriptors. A genetic function approximation algorithm was used to develop the QSARs.
View Article and Find Full Text PDFMany contaminated sites commonly have complex mixtures of polycyclic aromatic hydrocarbons (PAHs) whose individual microbial biodegradation may be altered in mixtures. Biodegradation kinetics for fluorene, naphthalene, 1,5-dimethylnaphthalene and 1-methylfluorene were evaluated in sole substrate, binary and ternary systems using Sphingomonas paucimobilis EPA505. The first order rate constants for fluorene, naphthalene, 1,5-dimethylnaphthalene, and 1-methylfluorene were comparable; yet Monod parameters were significantly different for the tested PAHs.
View Article and Find Full Text PDFThe kinetics of biodegradation of mixtures of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas paucimobilis strain EPA505 were investigated. The investigation focused on three- and four-ring PAHs, specifically 2-methylphenanthrene, fluoranthene, and pyrene. Uptake rates in aerobic batch suspended cultivations were measured for the individual PAHs and their binary and ternary mixtures.
View Article and Find Full Text PDFSubstrate depletion experiments were conducted to characterize aerobic biodegradation of 20 single polycyclic aromatic hydrocarbons (PAHs) by induced Sphingomonas paucimobilis strain EPA505 in liquid suspensions. PAHs consisted of low molecular weight, unsubstituted, and methyl-substituted homologs. A material balance equation containing the Andrews kinetic model, an extension of the Monod model accounting for substrate inhibition, was numerically fitted to batch depletion data to estimate extant kinetic parameters including the maximal specific uptake rates, q(max), the affinity coefficients, K(S), and the substrate inhibition coefficients, K(I).
View Article and Find Full Text PDFThe GLC and HPLC data of Autenrieth and co-workers (P. Dimitriou-Christidis, B. C.
View Article and Find Full Text PDFLiquid aqueous solubility (S(w,L)), octanol/water partition coefficients (K(ow)), liquid vapor pressure (P(v,L)), and Henry's law constants (H(c)) were estimated for 20 methylated naphthalenes ranging from monomethyl to tetramethylnaphthalenes. Chromatographic methods were used for the estimation. Chromatographic retention measurements were conducted for 11 reference compounds and regressions were fit between the retention indices and the physicochemical properties.
View Article and Find Full Text PDF