Publications by authors named "Petro Lutsyk"

Semiconductor quantum dots of the AB group and organic semiconductors have been widely studied and applied in optoelectronics. This study aims to combine CdTe quantum dots and perylene-based dye molecules into advanced nanostructure system targeting to improve their functional properties. In such systems, new electronic states, a mixture of Wannier-Mott excitons with charge-transfer excitons, have appeared at the interface of CdTe quantum dots and the perylene dye.

View Article and Find Full Text PDF

Novel applications of organic dyes and vast opportunities for their molecular tailoring keep the focus of the scientific community on the issues of symmetry breaking in the systems having different location of uncompensated charge, which has tremendous impact on photoluminescent properties of the dyes. In this article, we provide distinctive experimental evidence of three relaxation paths (one symmetrical and two unsymmetrical) of excited states by analysis of lifetime and spectra of time-resolved fluorescence at low temperature with strong support of quantum-chemical modeling. Importantly, the studied cyanine dye (astraphloxin) in aqueous solution has two different unsymmetrical relaxation paths of excited states in the polymethinic and donor-acceptor polyenic forms, where the last form strongly diminishes in less polar media.

View Article and Find Full Text PDF

Enzyme-functionalized dual-peak long-period fiber grating (LPFG) inscribed in 80 - ? m -cladding B/Ge codoped single-mode fiber is presented for sugar-level and specific glucose detection. Before enzyme functionalization, the dual-peak LPFG was employed for refractive index sensing and sugar-level detection and high sensitivities of ? 4298.20 ?? nm / RIU and 4.

View Article and Find Full Text PDF

The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required.

View Article and Find Full Text PDF

The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs - an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal.

View Article and Find Full Text PDF