Background: It is estimated that 1 in 4 stroke survivors will experience a second stroke. Educating patients about risk factors for stroke and a generally healthier lifestyle may help prevent recurrent strokes, which are a burden on society and the healthcare system. The goals of this paper were to investigate the estimated level of knowledge of stroke patients regarding their disease, the methods of information commonly used in clinical practice, the topics that should be included in an educational program aimed at improving health knowledge among stroke survivors, and how such a program could be delivered with the help of technology-based education (i.
View Article and Find Full Text PDFTelomeric G-quadruplexes (G4s) are non-canonical DNA structures composed of TTAGGG repeats. They are extensively studied both as biomolecules key for genome stability and as promising building blocks and functional elements in synthetic biology and nanotechnology. This is why it is extremely important to understand how the interaction between G4s is affected by their topology.
View Article and Find Full Text PDFIntroduction: Addressing hazing within the U.S. Military has become a critical concern to safeguard the well-being of service members; recent attempts to assess hazing prevalence in the military have been unsuccessful due to under representative data.
View Article and Find Full Text PDF3D printing of water stable proteins with elastic properties offers a broad range of applications including self-powered biomedical devices driven by piezoelectric biomaterials. Here, we present a study on water-soluble silk fibroin (SF) films. These films were prepared by mixing degummed silk fibers and calcium chloride (CaCl) in formic acid, resulting in a silk I-like conformation, which was then converted into silk II by redissolving in phosphate buffer (PBS).
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Human telomeres (HTs) can form DNA G-quadruplex (G4), an attractive target for anticancer and antiviral drugs. HT-G4s exhibit inherent structural polymorphism, posing challenges for understanding their specific recognition by ligands. Here, we aim to explore the impact of different topologies within a small segment of the HT (Tel22) on its interaction with BRACO19, a rationally designed G4 ligand with high quadruplex affinity, already employed in in-vivo treatments.
View Article and Find Full Text PDFTo date, the potential exploitation of hybrid organic-inorganic perovskites (HOIPs) in photovoltaic technologies has been significantly hampered by their poor environmental stability. HOIP degradation can be triggered by conventional operational environments, with excessive heating and exposure to oxygen and moisture significantly reducing the performances of HOIP-based solar cells. An imperative need emerges for a thorough investigation on the impact of these factors on the HOIP stability.
View Article and Find Full Text PDFProtein dynamics display distinct traits that are linked to their specific biological function. However, the interplay between intrinsic dynamics and the molecular environment on protein stability remains poorly understood. In this study, we investigate, by incoherent neutron scattering, the subnanosecond time scale dynamics of three model proteins: the mesophilic lysozyme, the thermophilic thermolysin, and the intrinsically disordered β-casein.
View Article and Find Full Text PDFDespite the technological importance of semiconductor black phosphorus (BP) in materials science, maintaining the stability of BP crystals in organic media and protecting them from environmental oxidation remains challenging. In this study, we present the synthesis of bulk BP and the exploitation of the viscoelastic properties of a regenerated silk fibroin (SF) film as a biocompatible substrate to transfer BP flakes, thereby preventing oxidation. A model based on the flow of polymers revealed that the applied flow-induced stresses exceed the yield stress of the BP aggregate.
View Article and Find Full Text PDFBackground: Unsupervised robot-assisted rehabilitation is a promising approach to increase the dose of therapy after stroke, which may help promote sensorimotor recovery without requiring significant additional resources and manpower. However, the unsupervised use of robotic technologies is not yet a standard, as rehabilitation robots often show low usability or are considered unsafe to be used by patients independently. In this paper we explore the feasibility of unsupervised therapy with an upper limb rehabilitation robot in a clinical setting, evaluate the effect on the overall therapy dose, and assess user experience during unsupervised use of the robot and its usability.
View Article and Find Full Text PDFMolecular mechanisms underlying the thermal response of cells remain elusive. On the basis of the recent result that the short-time diffusive dynamics of the proteome is an excellent indicator of temperature-dependent bacterial metabolism and death, we used neutron scattering (NS) spectroscopy and molecular dynamics (MD) simulations to investigate the sub-nanosecond proteome mobility in psychro-, meso-, and hyperthermophilic bacteria over a wide temperature range. The magnitude of thermal fluctuations, measured by atomic mean square displacements, is similar among all studied bacteria at their respective thermal cell death.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2024
We study the Thomson scattering from highly oriented pyrolitic graphite excited by the extreme ultraviolet, coherent pulses of FERMI free electron laser (FEL). An apparent nonlinear behavior is observed and fully described in terms of the coherent nature of both exciting FEL beam and scattered radiation, producing an intensity-dependent enhancement of the Thomson scattering cross-section. The process resembles Dicke's superradiant phenomenon and is thus interpreted as the observation of superradiant Thomson scattering.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
November 2023
Hybrid organic-inorganic perovskites (HOIPs) have attracted considerable attention in the past years as photoactive materials for low-cost, high-performance photovoltaics. Polaron formation through electron-phonon coupling has been recognized as the leading mechanism governing charge carrier transport and recombination in HOIPs. In this work, two types of MAPbBr film samples deposited on different substrates (transparent insulating SrTiO and a heterostructure mimicking a functioning photovoltaic cell) were photoexcited with above-bandgap radiation at 450 nm, and the effects of illumination on the sample were analyzed in the infrared region.
View Article and Find Full Text PDFBackground: Increasing the dose of therapy delivered to patients with stroke may improve functional outcomes and quality of life. Unsupervised technology-assisted rehabilitation is a promising way to increase the dose of therapy without dramatically increasing the burden on the health care system. Despite the many existing technologies for unsupervised rehabilitation, active rehabilitation robots have rarely been tested in a fully unsupervised way.
View Article and Find Full Text PDFUnderstanding how proteins work requires a thorough understanding of their internal dynamics. Proteins support a wide range of motions, from the femtoseconds to seconds time scale, relevant to crucial biological functions. In this context, the term "protein collective dynamics" refers to the complex patterns of coordinated motions of numerous atoms throughout the protein in the sub-picosecond time scale (terahertz frequency region).
View Article and Find Full Text PDFIn this study, we dissolved degummed silk [i.e., silk fibroin (SF)] and salmon sperm deoxyribonucleic acid (DNA) in water and used a bioinspired spinning process to obtain an electrospun nanofibrous SF-based patch (ESF).
View Article and Find Full Text PDFJ Phys Condens Matter
September 2023
It is well-established that multicomponent superconductors can host different nonstandard phenomena such as broken-time reversal symmetry (BTRS) states, exotic Fulde-Ferrell-Larkin-Ovchinnikov phases, the fractional Josephson effect as well as plenty of topological defects like phase solitons, domain walls and unusual vortex structures. We show that in the case of a two-component superconducting quasi-one-dimensional channel this catalogue can be extended by a novel inhomogeneous current state, which we have termed as a multiple-state, characterized by the coexistence of two different interpenetrating Cooper pair condensates with different total momenta. Within the Ginzburg-Landau formalism for a dirty two-band superconductor with sizable impurity scattering treated in the Born-approximation we reveal that under certain conditions, the occurrence of multiple-states can induce a cascade of transitions involving switching between them and the homogeneous BTRS (non-BTRS) states and vice versa leading this way to a complex interplay of homogeneous and inhomogeneous current states.
View Article and Find Full Text PDFIn this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.
View Article and Find Full Text PDFG-quadruplexes (G4s) are helical four-stranded structures forming from guanine-rich nucleic acid sequences, which are thought to play a role in cancer development and malignant transformation. Most current studies focus on G4 monomers, yet under suitable and biologically relevant conditions, G4s undergo multimerization. Here, we investigate the stacking interactions and structural features of telomeric G4 multimers by means of a novel low-resolution structural approach that combines small-angle X-ray scattering (SAXS) with extremely coarse-grained (ECG) simulations.
View Article and Find Full Text PDFGuanine-rich DNA sequences can fold into non-canonical nucleic acid structures called G-quadruplexes (G4s). These nanostructures have strong implications in many fields, from medical science to bottom-up nanotechnologies. As a result, ligands interacting with G4s have attracted great attention as candidates in medical therapies, molecular probe applications, and biosensing.
View Article and Find Full Text PDFIn this study, we fabricated adhesive patches from silkworm-regenerated silk and DNA to safeguard human skin from the sun's rays. The patches are realized by exploiting the dissolution of silk fibers (e.g.
View Article and Find Full Text PDFThe main protease (Mpro or 3CLpro) is an enzyme that is evolutionarily conserved among different genera of coronaviruses. As it is essential for processing and maturing viral polyproteins, Mpro has been identified as a promising target for the development of broad-spectrum drugs against coronaviruses. Like SARS-CoV and MERS-CoV, the mature and active form of SARS-CoV-2 Mpro is a dimer composed of identical subunits, each with a single active site.
View Article and Find Full Text PDFis one of the most devastating phytopathogenic fungi. This microorganism causes black spots in many fruits and vegetables worldwide, generating significant post-harvest losses. In this study, an strain, isolated from infected pears () harvested in Italy, was characterized by focusing on its pathogenicity mechanisms and competitive exclusion in the presence of another pathogen, .
View Article and Find Full Text PDFThe interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop.
View Article and Find Full Text PDFTelomeric G-quadruplexes (G4s) are promising targets in the design and development of anticancer drugs. Their actual topology depends on several factors, resulting in structural polymorphism. In this study, we investigate how the fast dynamics of the telomeric sequence AG3(TTAG3)3 (Tel22) depends on the conformation.
View Article and Find Full Text PDF