Purpose: To compare prospectively the assessment of stenosis and radiologist confidence in the evaluation of below-the-knee lower extremity runoff vessels between computed tomography (CT) angiography and contrast-enhanced magnetic resonance (MR) angiography in a cohort of 19 clinical patients.
Materials And Methods: The study was compliant with the Health Insurance Portability and Accountability Act of 1996 and approved by the institutional review board. Imaging was performed in 19 consecutive patients with known or suspected peripheral arterial disease; both CT angiography and a more recently developed MR angiography technique were performed within 24 hours of each other and before any therapeutic intervention.
Quantitative estimation of T1 is a challenging but important task inherent to many clinical applications. The most commonly used paradigm for estimating T1 in vivo involves performing a sequence of spoiled gradient-recalled echo acquisitions at different flip angles, followed by fitting of an exponential model to the data. Although there has been substantial work comparing different fitting methods, there has been little discussion on how these methods should be applied for data acquired using multichannel receivers.
View Article and Find Full Text PDFPurpose: To assess the performance of a recently developed 3D time-resolved CE-MRA technique, Cartesian Acquisition with Projection-Reconstruction-like sampling (CAPR), for accurate characterization and treatment planning of vascular malformations of the periphery.
Materials And Methods: Twelve patient studies were performed (eight female, four male; average age, 33 years). The protocol consisted of three-dimensional (3D) time-resolved CE-MRA followed by a single late phase T1-weighted acquisition.
Purpose: To demonstrate that highly accelerated (net acceleration factor [R(net)] ≥ 10) acquisition techniques can be used to generate three-dimensional (3D) subsecond timing images, as well as diagnostic-quality high-spatial-resolution contrast material-enhanced (CE) renal magnetic resonance (MR) angiograms with a single split dose of contrast material.
Materials And Methods: All studies were approved by the institutional review board and were HIPAA compliant; written consent was obtained from all participants. Twenty-two studies were performed in 10 female volunteers (average age, 47 years; range, 27-62 years) and six patients with renovascular disease (three women; average age, 48 years; range, 37-68 years; three men; average age, 60 years; range, 50-67 years; composite average age, 54 years; range, 38-68 years).
Methods are described for generating 3D time-resolved contrast-enhanced magnetic resonance (MR) angiograms of the hands and feet. Given targeted spatial resolution and frame times, it is shown that acceleration of about one order of magnitude or more is necessary. This is obtained by a combination of 2D sensitivity encoding (SENSE) and homodyne (HD) acceleration methods.
View Article and Find Full Text PDFVascular imaging can be essential in the diagnosis, monitoring, and planning and assessment of treatment of patients with peripheral vascular disease. The purpose of this work is to describe a recently developed three-dimensional (3D) time-resolved contrast-enhanced MR angiography (CE-MRA) technique, Cartesian Acquisition with Projection Reconstruction-like sampling (CAPR), and its application to imaging of the vasculature of the lower legs and feet. CAPR implements accelerated imaging techniques and uses specialized multielement imaging coil arrays to achieve high temporal and high spatial resolution imaging.
View Article and Find Full Text PDFHigh temporal and spatial resolution is desired in imaging of vascular abnormalities having short arterial-to-venous transit times. Methods that exploit temporal correlation to reduce the observed frame time demonstrate temporal blurring, obfuscating bolus dynamics. Previously, a Cartesian acquisition with projection reconstruction-like (CAPR) sampling method has been demonstrated for three-dimensional contrast-enhanced angiographic imaging of the lower legs using two-dimensional sensitivity-encoding acceleration and partial Fourier acceleration, providing 1mm isotropic resolution of the calves, with 4.
View Article and Find Full Text PDFVarious methods have been used for time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA), many involving view sharing. However, the extent to which the resultant image time series represents the actual dynamic behavior of the contrast bolus is not always clear. Although numerical simulations can be used to estimate performance, an experimental study can allow more realistic characterization.
View Article and Find Full Text PDFMR images formed using extended FOV continuously moving table data acquisition can have signal falloff and loss of lateral spatial resolution at localized, periodic positions along the direction of table motion. In this work we identify the origin of these artifacts and provide a means for correction. The artifacts are due to a mismatch of the phase of signals acquired from contiguous sampling fields of view and are most pronounced when the central k-space views are being sampled.
View Article and Find Full Text PDF