Spectral hole burning (SHB) and difference fluorescence line narrowing (ΔFLN) are routinely used for investigations of electron-phonon coupling in photosynthetic pigment-protein complexes as well as in other amorphous systems at cryogenic temperatures. Nevertheless, the Huang-Rhys factors S, an integral measure of electron-phonon coupling strength, and the phonon spectral densities obtained by SHB and ΔFLN over the past years have differed significantly in the case of certain photosynthetic pigment-protein complexes. In this work, the specific properties of both types of line-narrowing spectroscopic techniques that may lead to these discrepancies are critically analyzed by a combined experimental and computational approach, using the CP29 antenna complex of green plants as a suitable model system.
View Article and Find Full Text PDFThe cyanobacterium Acaryochloris marina developed two types of antenna complexes, which contain chlorophyll-d (Chl d) and phycocyanobilin (PCB) as light-harvesting pigment molecules, respectively. The latter membrane-extrinsic complexes are denoted as phycobiliproteins (PBPs). Spectral hole burning was employed to study excitation energy transfer and electron-phonon coupling in PBPs.
View Article and Find Full Text PDF