Proc Natl Acad Sci U S A
September 2024
The perception of musical phrase boundaries is a critical aspect of human musical experience: It allows us to organize, understand, derive pleasure from, and remember music. Identifying boundaries is a prerequisite for segmenting music into meaningful chunks, facilitating efficient processing and storage while providing an enjoyable, fulfilling listening experience through the anticipation of upcoming musical events. Expanding on Sridharan et al.
View Article and Find Full Text PDFRhythmic entrainment is a fundamental aspect of musical behavior, but the skills required to accurately synchronize movement to the beat seem to develop over many years. Motion capture studies of corporeal synchronization have shown immature abilities to lock in to the beat in children before age 5, and reliable synchronization ability in adults without musical training; yet there is a lack of data on full-body synchronization skills between early childhood and adulthood. To document typical rhythmic synchronization during middle childhood, we used a wireless motion capture device to measure period- and phase-locking of full body movement to rhythm and metronome stimuli in 6 to 11 year-old children in comparison with adult data.
View Article and Find Full Text PDFMusic that evokes strong emotional responses is often experienced as autobiographically salient. Through emotional experience, the musical features of songs could also contribute to their subjective autobiographical saliency. Songs which have been popular during adolescence or young adulthood (ages 10-30) are more likely to evoke stronger memories, a phenomenon known as a reminiscence bump.
View Article and Find Full Text PDFMusic listening is a dynamic process that entails complex interactions between sensory, cognitive, and emotional processes. The naturalistic paradigm provides a means to investigate these processes in an ecologically valid manner by allowing experimental settings that mimic real-life musical experiences. In this paper, we highlight the importance of the naturalistic paradigm in studying dynamic music processing and discuss how it allows for investigating both the segregation and integration of brain processes using model-based and model-free methods.
View Article and Find Full Text PDFBody movement is a primary nonverbal communication channel in humans. Coordinated social behaviors, such as dancing together, encourage multifarious rhythmic and interpersonally coupled movements from which observers can extract socially and contextually relevant information. The investigation of relations between visual social perception and kinematic motor coupling is important for social cognition.
View Article and Find Full Text PDFPrevious literature has shown that music preferences (and thus preferred musical features) differ depending on the listening context and reasons for listening (RL). Yet, to our knowledge no research has investigated how features of music that people dance or move to relate to particular RL. Consequently, in two online surveys, participants (N = 173) were asked to name songs they move to ("dance music").
View Article and Find Full Text PDFMovement is a universal response to music, with dance often taking place in social settings. Although previous work has suggested that socially relevant information, such as personality and gender, are encoded in dance movement, the generalizability of previous work is limited. The current study aims to decode dancers' gender, personality traits, and music preference from music-induced movements.
View Article and Find Full Text PDFHumans are able to synchronize with musical events whilst coordinating their movements with others. Interpersonal entrainment phenomena, such as dance, involve multiple body parts and movement directions. Along with being multidimensional, dance movement interaction is plurifrequential, since it can occur at different frequencies simultaneously.
View Article and Find Full Text PDFAlthough music is known to be a part of everyday life and a resource for mood and emotion management, everyday life has changed significantly for many due to the global coronavirus pandemic, making the role of music in everyday life less certain. An online survey in which participants responded to Likert scale questions as well as providing free text responses was used to explore how participants were engaging with music during the first wave of the pandemic, whether and how they were using music for mood regulation, and how their engagement with music related to their experiences of worry and anxiety resulting from the pandemic. Results indicated that, for the majority of participants, while many felt their use of music had changed since the beginning of the pandemic, the amount of their music listening behaviors were either unaffected by the pandemic or increased.
View Article and Find Full Text PDFBackground And Objectives: Music has a unique capacity to evoke both strong emotions and vivid autobiographical memories. Previous music information retrieval (MIR) studies have shown that the emotional experience of music is influenced by a combination of musical features, including tonal, rhythmic, and loudness features. Here, our aim was to explore the relationship between music-evoked emotions and music-evoked memories and how musical features (derived with MIR) can predict them both.
View Article and Find Full Text PDFTo examine the electrophysiological underpinnings of the functional networks involved in music listening, previous approaches based on spatial independent component analysis (ICA) have recently been used to ongoing electroencephalography (EEG) and magnetoencephalography (MEG). However, those studies focused on healthy subjects, and failed to examine the group-level comparisons during music listening. Here, we combined group-level spatial Fourier ICA with acoustic feature extraction, to enable group comparisons in frequency-specific brain networks of musical feature processing.
View Article and Find Full Text PDFRecently, exploring brain activity based on functional networks during naturalistic stimuli especially music and video represents an attractive challenge because of the low signal-to-noise ratio in collected brain data. Although most efforts focusing on exploring the listening brain have been made through functional magnetic resonance imaging (fMRI), sensor-level electro- or magnetoencephalography (EEG/MEG) technique, little is known about how neural rhythms are involved in the brain network activity under naturalistic stimuli. This study exploited cortical oscillations through analysis of ongoing EEG and musical feature during freely listening to music.
View Article and Find Full Text PDFBackground: Ongoing EEG data are recorded as mixtures of stimulus-elicited EEG, spontaneous EEG and noises, which require advanced signal processing techniques for separation and analysis. Existing methods cannot simultaneously consider common and individual characteristics among/within subjects when extracting stimulus-elicited brain activities from ongoing EEG elicited by 512-s long modern tango music.
New Method: Aiming to discover the commonly music-elicited brain activities among subjects, we provide a comprehensive framework based on fast double-coupled nonnegative tensor decomposition (FDC-NTD) algorithm.
We investigated the relationships between perceptions of similarity and interaction in spontaneously dancing dyads, and movement features extracted using novel computational methods. We hypothesized that dancers' movements would be perceived as more similar when they exhibited spatially and temporally comparable movement patterns, and as more interactive when they spatially oriented more towards each other. Pairs of dancers were asked to move freely to two musical excerpts while their movements were recorded using optical motion capture.
View Article and Find Full Text PDFKeeping time is fundamental for our everyday existence. Various isochronous activities, such as locomotion, require us to use internal timekeeping. This phenomenon comes into play also in other human pursuits such as dance and music.
View Article and Find Full Text PDFAtten Percept Psychophys
October 2019
For both musicians and music psychologists, beat rate (BPM) has often been regarded as a transparent measure of musical speed or tempo, yet recent research has shown that tempo is more than just BPM. In a previous study, London, Burger, Thompson, and Toiviainen (Acta Psychologica, 164, 70-80, 2016) presented participants with original as well as "time-stretched" versions of classic R&B songs; time stretching slows down or speeds up a recording without changing its pitch or timbre. In that study we discovered a tempo anchoring effect (TAE): Although relative tempo judgments (original vs.
View Article and Find Full Text PDFLearning, attention and action play a crucial role in determining how stimulus predictions are formed, stored, and updated. Years-long experience with the specific repertoires of sounds of one or more musical styles is what characterizes professional musicians. Here we contrasted active experience with sounds, namely long-lasting motor practice, theoretical study and engaged listening to the acoustic features characterizing a musical style of choice in professional musicians with mainly passive experience of sounds in laypersons.
View Article and Find Full Text PDFExpertise in music has been investigated for decades and the results have been applied not only in composition, performance and music education, but also in understanding brain plasticity in a larger context. Several studies have revealed a strong connection between auditory and motor processes and listening to and performing music, and music imagination. Recently, as a logical next step in music and movement, the cognitive and affective neurosciences have been directed towards expertise in dance.
View Article and Find Full Text PDFBackground: There has been growing interest towards naturalistic neuroimaging experiments, which deepen our understanding of how human brain processes and integrates incoming streams of multifaceted sensory information, as commonly occurs in real world. Music is a good example of such complex continuous phenomenon. In a few recent fMRI studies examining neural correlates of music in continuous listening settings, multiple perceptual attributes of music stimulus were represented by a set of high-level features, produced as the linear combination of the acoustic descriptors computationally extracted from the stimulus audio.
View Article and Find Full Text PDFEncoding models can reveal and decode neural representations in the visual and semantic domains. However, a thorough understanding of how distributed information in auditory cortices and temporal evolution of music contribute to model performance is still lacking in the musical domain. We measured fMRI responses during naturalistic music listening and constructed a two-stage approach that first mapped musical features in auditory cortices and then decoded novel musical pieces.
View Article and Find Full Text PDFWhen watching performing arts, a wide and complex network of brain processes emerge. These processes can be shaped by professional expertise. When compared to laymen, dancers have enhanced processes in observation of short dance movement and listening to music.
View Article and Find Full Text PDFPattern recognition on neural activations from naturalistic music listening has been successful at predicting neural responses of listeners from musical features, and vice versa. Inter-subject differences in the decoding accuracies have arisen partly from musical training that has widely recognized structural and functional effects on the brain. We propose and evaluate a decoding approach aimed at predicting the musicianship class of an individual listener from dynamic neural processing of musical features.
View Article and Find Full Text PDFRecent functional studies suggest that noise sensitivity, a trait describing attitudes towards noise and predicting noise annoyance, is associated with altered processing in the central auditory system. In the present work, we examined whether noise sensitivity could be related to the structural anatomy of auditory and limbic brain areas. Anatomical MR brain images of 80 subjects were parcellated with FreeSurfer to measure grey matter volume, cortical thickness, cortical area and folding index of anatomical structures in the temporal lobe and insular cortex.
View Article and Find Full Text PDFPrevious studies have found relationships between music-induced movement and musical characteristics on more general levels, such as tempo or pulse clarity. This study focused on synchronization abilities to music of finely-varying tempi and varying degrees of low-frequency spectral change/flux. Excerpts from six classic Motown/R&B songs at three different tempos (105, 115, and 130 BPM) were used as stimuli in this experiment.
View Article and Find Full Text PDF