Publications by authors named "Petrauskene O"

Various staining strategies and color combinations have been developed to perform single and double immunohistochemical staining on biological samples. However, until recently, the lack of appropriate chromogen color combinations has severely limited many of these methods. Fortunately, this situation has dramatically improved with the introduction of new chromogens and methods of analysis.

View Article and Find Full Text PDF

Modern molecular methods offer the advantages of simplicity and short time-to-results compared to traditional culture methods. We describe the validation of a new Real-Time PCR method to detect E. coli O157:H7 in five food matrixes.

View Article and Find Full Text PDF

A complete system for real-time PCR detection of Listeria species was validated in five food matrixes and five environmental surfaces, namely, hot dogs, roast beef, lox (smoked salmon), pasteurized whole cow's milk, dry infant formula, stainless steel, plastic cutting board, ceramic tile, rubber sheets, and sealed concrete. The system consists of the MicroSEQ Listeria spp. Detection Kit, two sample preparation kits (PrepSEQ Nucleic Acid Extraction Kit and PrepSEQ Rapid Spin Sample Preparation Kit), the Applied Biosystems 7500 Fast Real-Time PCR instrument, and the RapidFinderTM Express v1.

View Article and Find Full Text PDF

Enteropathogenic Escherichia coli (EPEC) continues to be a leading cause of mortality and morbidity in children around the world. Two EPEC genomes have been fully sequenced: those of EPEC O127:H6 strain E2348/69 (United Kingdom, 1969) and EPEC O55:H7 strain CB9615 (Germany, 2003). The O55:H7 serotype is a recent precursor to the virulent enterohemorrhagic E.

View Article and Find Full Text PDF

Reducing the risk of Salmonella contamination in pet food is critical for both companion animals and humans, and its importance is reflected by the substantial increase in the demand for pathogen testing. Accurate and rapid detection of foodborne pathogens improves food safety, protects the public health, and benefits food producers by assuring product quality while facilitating product release in a timely manner. Traditional culture-based methods for Salmonella screening are laborious and can take 5 to 7 days to obtain definitive results.

View Article and Find Full Text PDF

Increasingly, more food companies are relying on molecular methods, such as PCR, for pathogen detection due to their improved simplicity, sensitivity, and rapid time to results. This report describes the validation of a new Real-Time PCR method to detect Listeria monocytogenes in nine different food matrixes. The complete system consists of the MicroSEQ L.

View Article and Find Full Text PDF

Real-time PCR methods for detecting foodborne pathogens offer the advantages of simplicity and quick time-to-results compared to traditional culture methods. In this study, the MicroSEQ real-time PCR system was evaluated for detection of Salmonella spp. in 10 different food matrixes following the AOAC Research Institute's Performance Tested Method validation program.

View Article and Find Full Text PDF

Three species--Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus--account for the majority of vibrio infections in humans. Rapid and accurate identification of Vibrio species has been problematic because phenotypic characteristics are variable within species. Additionally, biochemical identification and confirmation require 2 or more days to complete.

View Article and Find Full Text PDF

Background: The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes.

View Article and Find Full Text PDF

New lyophilized real-time reverse transcription (RT)-PCR avian influenza detection assays were designed and tested. The M-gene assay detects all avian influenza virus (AIV) subtypes, and the H5 and H7 specific assays can discriminate the AIV subtypes H5 and H7 of Eurasian origin. The assays are formulated in a lyophilized bead format containing an internal positive control to monitor inhibitors in the reaction.

View Article and Find Full Text PDF

Peanut butter spiked with Salmonella enterica ser. Typhimurium was prepared by an independent laboratory and sent to Applied Biosystems to determine the sensitivity and specificity of the TaqMan Salmonella enterica Detection Kit for detecting Salmonella in peanut butter. The samples were spiked at three levels: five no-spike (0 CFU/25 g); 20 low-spike (0.

View Article and Find Full Text PDF

The recent emergence of a novel H1N1 influenza A virus in humans caused the first influenza pandemic of this century. Many clinical diagnostic laboratories are overwhelmed by the testing demands related to the infection. Three novel H1N1-specific primer-probe sets reported during the early phase of the pandemic were tested in three commercial real-time RT-PCR mixtures.

View Article and Find Full Text PDF

Hypertension induced by high-salt diet in Dahl salt-sensitive rats leads to compensatory cardiac hypertrophy by approximately 11 wk, cardiac dysfunction at approximately 17 wk, and death from cardiac dysfunction at approximately 21 wk. It is unclear what molecular hallmarks distinguish the compensatory hypertrophy from the decompensated cardiac dysfunction phase. Here we compared the gene expression in rat cardiac tissue from the compensatory hypertrophic phase (11 wk, n = 6) with the cardiac dysfunction phase (17 wk, n = 6) and with age-matched normotensive controls.

View Article and Find Full Text PDF

Activity of voltage-gated K(+) (K(V)) channels in pulmonary artery smooth muscle cells (PASMC) plays an important role in control of apoptosis and proliferation in addition to regulating membrane potential and pulmonary vascular tone. Bone morphogenetic proteins (BMPs) inhibit proliferation and induce apoptosis in normal human PASMC, whereas dysfunctional BMP signaling and downregulated K(V) channels are involved in pulmonary vascular medial hypertrophy associated with pulmonary hypertension. This study evaluated the effect of BMP-2 on K(V) channel function and expression in normal human PASMC.

View Article and Find Full Text PDF

The ViroSeq human immunodeficiency virus type 1 (HIV-1) genotyping system is an integrated system for identification of drug resistance mutations in HIV-1 protease and reverse transcriptase (RT). Reagents are included for sample preparation, reverse transcription, PCR amplification, and sequencing. Software is provided to assemble and edit sequence data and to generate a drug resistance report.

View Article and Find Full Text PDF

Objective: Emergence of human immunodeficiency virus type-1 (HIV-1) genotypic drug resistance is generally attributed to noncompliance, poorly absorbed drugs, or drug-to-drug interaction. Attempts to determine emerging genotypic drug resistance from study subjects on highly active antiretroviral therapy (HAART) relied on insensitive polymerase chain reaction (PCR) techniques, revealing wild type HIV-1 or precursor resistant genotypes from few plasma samples successfully amplified with <50 copies/mL.

Study Design/methods: In this analysis, using Applied Biosystems' ViroSeq HIV-1 Genotyping Systems, Version 2.

View Article and Find Full Text PDF

Oligonucleotides of nonregular heteropyrimidine sequences incorporating or not incorporating purine residues 5'-d(ACTCCCTTCTCCTCTCTA), 5'-d(ACTCCCTGGTCCTCTCTA), 5'-d(TCTCTCCTGGTCCCTCC), and 5'-d(TCTCTCCTCTTCCCTCC) can form self-associated parallel-stranded (ps) structures at pH 4-5.5. The ps structures were identified by studying at neutral and acidic pH UV melting transitions, FTIR spectra, and fluorescence of pyrene-labeled oligonucleotides as well as by chemical joining of 5'-phosphorylated oligonucleotides.

View Article and Find Full Text PDF

Oligonucleotides containing 1-(beta-D-2'-deoxy-threo-pentofuranosyl)cytosine (dCx) and/or 1-(beta-D-2'-deoxy-threo-pentofuranosyl)thymine (dTx) in place of dC and dT residues in the EcoRII and MvaI recognition site CC(A/T)GG were synthesized in order to investigate specific recognition of the DNA sugar-phosphate backbone by EcoRII and MvaI restriction endonucleases. In 2'-deoxyxylosyl moieties of dCx and dTx, 3'-hydroxyl groups were inverted, which perturbs the related individual phosphates. Introduction of a single 2'-deoxyxylosyl moiety into a dC x dG pair resulted in a minor destabilization of double-stranded DNA structure.

View Article and Find Full Text PDF

Ecl18kI is a type II restriction-modification system isolated from Enterobacter cloaceae 18kI strain. Genes encoding Ecl18kI methyltransferase (M.Ecl18kI) and Ecl18kI restriction endonuclease (R.

View Article and Find Full Text PDF

EcoRII is a typical restriction enzyme that cleaves DNA using a two-site mechanism. EcoRII endonuclease is unable to cleave DNA which contains a small number of EcoRII recognition sites but the enzyme activity can be stimulated in the presence of DNA with a high frequency of EcoRII sites. To investigate the mechanism of activation, the kinetics of stimulated EcoRII cleavage has been studied.

View Article and Find Full Text PDF

A one-step spectrophotometric method for monitoring of nucleic acid cleavage by ribonuclease H from E. coli and type II restriction endonucleases has been proposed. It is based on recording of the increase in the UV absorbance at 260 nm during the course of enzymatic reaction.

View Article and Find Full Text PDF

Oligonucleotides containing 2-aminopurine (2-AP) in place of G or A in the recognition site of EcoRII (CCT/AGG) or SsoII (CCNGG) restriction endonucleases have been synthesized in order to investigate the specific interaction of DNA with these enzymes. Physicochemical properties (CD spectra and melting behaviour) have shown that DNA duplexes containing 2-aminopurine exist largely in a stable B-like form. 2-Aminopurine base paired with cytidine, however, essentially influences the helix structure.

View Article and Find Full Text PDF

DNA duplexes containing the natural methylated bases N6-methyladenine (m6Ade), N4-methylcytosine (m4Cyt) or C5-methylcytosine (m5Cyt) in one strand of the recognition sequence are resistant to EcoRII restriction endonuclease (R.EcoRII). Hydrolysis of these modified duplexes was observed in the presence of the canonical substrate.

View Article and Find Full Text PDF