In this study, we designed squaraine-based dyes with a 2-amino pyrrole donor unit and acene groups like anthracene and pentacene. These dyes incorporate three different electron-withdrawing groups - cyanoacrylate (A1), phosphonate (A2) and boronic acid (A3) - as linkers to the TiO semiconductor. The spectroscopic, electronic and photochemical properties of these compounds were investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) simulations.
View Article and Find Full Text PDFWe investigate the therapeutic potential of Aloin A and Aloin B, two natural compounds derived from Aloe vera leaves, focusing on their neuroprotective and anticancer properties. The structural differences between these two epimers suggest that they may exhibit distinct pharmacological properties. Our investigations revealed that both epimers are not stable in aqueous solution and tend to degrade rapidly, with their concentration decreasing by over 50% within approximately 12 h.
View Article and Find Full Text PDFIodine is a vital microelement and a powerful antiseptic with a rapid and broad spectrum of action. The development of iodophor compounds to improve the solubility and stability of iodine is still challenging. Here, we report the synthesis of a novel cationic β-cyclodextrin bearing a choline-like pendant (β-CD-Chol) designed to complex and deliver iodine to bacterial cells.
View Article and Find Full Text PDFIn this paper, we employ density functional theory (DFT) simulations to predict the energy conversion efficiency of a novel class of organic dyes based on linear carbon chain (LCC) linkers for application in dye-sensitized solar cells (DSSCs). We investigate the role of the anchoring group, which serves as a bridge connecting the linker and the surface. Specifically, we compare the performance of cyanoacrylic acid, dyes PY-4N and PY-3N, with that of phosphonate derivatives, dyes PY-4NP and PY-3NP, wherein the carboxylic group of the cyanoacrylic moiety is replaced with phosphonic acid.
View Article and Find Full Text PDFHyperphenylalaninemia (HPA) is the most common inherited amino acid metabolism disorder characterized by serious clinical manifestations, including irreversible brain damage, intellectual deficiency and epilepsy. Due to its extensive genic and allelic heterogeneity, next-generation sequencing (NGS) technology may help to identify the molecular basis of this genetic disease. Herein, we describe the development and validation of a targeted NGS (tNGS) approach for the simultaneous detection of single-nucleotide changes and copy number variations (CNVs) in genes associated with HPA (, , , , , ) or useful for its differential diagnosis ().
View Article and Find Full Text PDFNoble metal nanoparticles (NP) with intrinsic antiangiogenic, antibacterial, and anti-inflammatory properties have great potential as potent chemotherapeutics, due to their unique features, including plasmonic properties for application in photothermal therapy, and their capability to slow down the migration/invasion speed of cancer cells and then suppress metastasis. In this work, gold (Au), silver (Ag), and palladium (Pd) NP were synthesized by a green redox chemistry method with the reduction of the metal salt precursor with glucose in the presence of polyvinylpyrrolidone (PVP) as stabilizing and capping agent. The physicochemical properties of the PVP-capped NP were investigated by UV-visible (UV-vis) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, dynamic light scattering (DLS), and atomic force microscopy (AFM), to scrutinize the optical features and the interface between the metal surface and the capping polymer, the hydrodynamic size, and the morphology, respectively.
View Article and Find Full Text PDFThe accurate monitoring of phenylalanine concentration plays a prominent role in the treatment of phenylketonuria (PKU). In this study, we present an enzymatic assay based on Phenylalanine Dehydrogenase/NAD and tris (bipyridine) Ruthenium (II/III) as a colorimetric mediator for the detection of Phenylalanine concentration. The amount of amino acid was quantitatively recognized by optical absorption measurements at 452 nm through the conversion of Ru (byp) to Ru (byp) , which is induced by the neoformed NADH.
View Article and Find Full Text PDFSpectroscopic, electronic and electron injection properties of a new class of linear carbon chain (LCC) based organic dyes have been investigated, by means of density functional theory (DFT) and time-dependent density functional theory (TDDFT), for application in dye-sensitized solar cells (DSSCs). The photophysical properties of LCC-based dyes are tuned by changing the length of the linear carbon chain; UV/VIS absorption is red-shifted with increasing LCC length whereas oscillator strength and electron injection properties are reduced. Excellent nonlinear optical properties are predicted in particular for PY-N4 and PY-S4 dyes in the planar conformation.
View Article and Find Full Text PDFA silicon lab-on-chip, for the detection of nucleic acids through the integrated PCR and hybridization microarray, was developed. The silicon lab-on-chip manufactured through bio-MEMS technology is composed of two PCR microreactors (each volume 11.2 µL) and a microarray-hybridization microchamber (volume 30 µL), fluidically connected by buried bypass.
View Article and Find Full Text PDFCore-shell nanocomposites are one of the most important achievements in the fast-growing field of nanotechnology. The combination of multi-responsive nano-shell with luminescent and photothermal core has led to promising applications in various fields such as optics, electronics and medicine. In this work, a nanosized core-shell system composed by carbonized dots core and poly(N-isopropylacrylamide) shell was developed and the photothermal triggered release of doxorubicin was demonstrated.
View Article and Find Full Text PDFDetection of nucleic acids is crucial in many medical applications, and in particular for monitoring infectious diseases, as it has become perfectly clear after the pandemic infection of COVID-19. In this context, the development of innovative detection methods based on signal-amplification rather than analyte-amplification represents a significant breakthrough compared to existing PCR-based methodologies, allowing the development of new nucleic acid detection technologies suitable to be integrated in portable and low-cost sensor devices while keeping high sensitivities, thus enabling massive diagnostic screening. In this work, we present a novel molecular sensor for the ultrasensitive PCR-free detection of Hepatitis B Virus (HBV) based on electrochemiluminescence (ECL).
View Article and Find Full Text PDFThe great diversity of the invertebrate community thriving in the deepest sections of the gypsum karst system of the Monte Conca sinkhole (Sicily, Italy) suggests the existence of a complex food web associated with a sulfidic pool and chemoautotrophic microbial activity. To shed light on the peculiarity of this biological assemblage, we investigated the species composition of the invertebrate community and surveyed trophic interactions by stable isotope analysis. The faunal investigation conducted by visual censuses and hand sampling methods led to the discovery of a structured biological assemblage composed of both subterranean specialized and non-specialized species, encompassing all trophic levels.
View Article and Find Full Text PDFSurface chemistry is a fundamental aspect of the development of the sensitive biosensor based on microarray technology. Here, an advanced PNA-microarray system for the detection of miRNA, composed by a multilayered Si/Al/Agarose component, is described. A straightforward optical signal enhancement is achieved thanks to a combination of the Al film mirror effect and the positive interference for the emission wavelength of the Cy5 fluorescent label tuned by the agarose film.
View Article and Find Full Text PDF