Publications by authors named "Petra Windisch"

The well-known opioid agonists, oxycodone and oxymorphone, and the opioid antagonists, naloxone and naltrexone, are commonly used clinical agents and research tools in the opioid field. They belong to the class of morphinan-6-ones, and produce their pharmacological effects by interacting with opioid receptors, i.e.

View Article and Find Full Text PDF

The synthesis and the effect of a combination of 6-glycine and 14-phenylpropoxy substitutions in N-methyl- and N-cycloproplymethylmorphinans on biological activities are described. Binding studies revealed that all new 14-phenylpropoxymorphinans (11-18) displayed high affinity to opioid receptors. Replacement of the 14-methoxy group with a phenylpropoxy group led to an enhancement in affinity to all three opioid receptor types, with most pronounced increases in δ and κ activities, hence resulting in a loss of μ receptor selectivity.

View Article and Find Full Text PDF

Opioids induce analgesia by activating opioid receptors not only within the central nervous system but also on peripheral sensory neurons. This study investigated peripherally mediated antinociception produced by the mu-opioid receptor agonist 2-[(4,5alpha-epoxy-3-hydroxy-14beta-methoxy-17-methylmorphinan-6beta-yl)amino]acetic acid (HS-731) after s.c.

View Article and Find Full Text PDF

Tosylmethyl isocyanide was used to convert 7,8-didehydro-6-ketomorphinans to 6,7-didehydromorphinan-6-carbonitriles with retainment of the 4,5-epoxy ring. However, ring opening occurred in the presence of NaH giving 5,6,7,8-tetradehydromorphinan-6-carbonitriles. Addition of nucleophiles such as Li diisopropylamide or Grignard reagents to the acrylonitrile substructure yielded ring-opened 5,6-didehydro products.

View Article and Find Full Text PDF