Publications by authors named "Petra Tafelmeyer"

The prolyl-specific peptidase fibroblast activation protein-α (FAP-α) is expressed at very low or undetectable levels in nondiseased human tissues but is selectively induced in activated (myo)fibroblasts at sites of tissue remodeling in fibrogenic processes. In normal regenerative processes involving fibrosis FAP-α(myo)fibroblasts disappear from injured tissues, replaced by cells with a normal FAP-α phenotype. In uncontrolled pathological fibrosis FAP-α(myo)fibroblasts permanently replace normal tissues.

View Article and Find Full Text PDF

Actin-based protrusions are reinforced through positive feedback, but it is unclear what restricts their size, or limits positive signals when they retract or split. We identify an evolutionarily conserved regulator of actin-based protrusion: CYRI (CYFIP-related Rac interactor) also known as Fam49 (family of unknown function 49). CYRI binds activated Rac1 via a domain of unknown function (DUF1394) shared with CYFIP, defining DUF1394 as a Rac1-binding module.

View Article and Find Full Text PDF

Fibroblast activation protein-α (FAP-α) belongs to the family of prolyl-specific serine proteases. FAP-α displays both exopeptidase and endopeptidase/gelatinase/collagenase activities. FAP-α protein and/or activity have been associated with fibrosis, inflammation and cancer, but the protein is undetectable in most normal tissues.

View Article and Find Full Text PDF

In mammals, the hormone melatonin is mainly produced by the pineal gland with nocturnal peak levels. Its peripheral and central actions rely either on its intrinsic antioxidant properties or on binding to melatonin MT1 and MT2 receptors, belonging to the G protein-coupled receptor (GPCR) super-family. Melatonin has been reported to be involved in many functions of the central nervous system such as circadian rhythm regulation, neurotransmission, synaptic plasticity, memory, sleep, and also in Alzheimer's disease and depression.

View Article and Find Full Text PDF

Fruit ripening is a complex developmental process responsible for the transformation of the seed-containing organ into a tissue attractive to seed dispersers and agricultural consumers. The coordinated regulation of the different biochemical pathways necessary to achieve this change receives considerable research attention. The MADS-box transcription factor RIPENING INHIBITOR (RIN) is an essential regulator of tomato (Solanum lycopersicum) fruit ripening but the exact mechanism by which it influences the expression of ripening-related genes remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates a protein called SMILE (TMTC3) that is over-expressed in the blood of renal transplant patients who have achieved operational tolerance without immunosuppressive drugs.
  • Researchers confirmed that SMILE is linked to endoplasmic reticulum (ER) stress responses and affects proteasome activity, which is crucial for protein degradation within cells.
  • The findings suggest that understanding SMILE's role could lead to new insights in regulating immune responses in transplantation, potentially improving long-term acceptance of grafts.
View Article and Find Full Text PDF

To identify host factors that play critical roles in processes, including cell-to-cell movement of plant-adapted rhabdoviruses, we constructed and validated a high-resolution Nicotiana benthamiana yeast two-hybrid library. The library was screened with the putative movement protein (sc4), nucleocapsid (N), and matrix (M) proteins of Sonchus yellow net virus (SYNV). This resulted in identification of 31 potential host factors.

View Article and Find Full Text PDF

Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rapidly emerging human disease in which mycolactone, a cytotoxic and immunosuppressive macrocyclic polyketide, is responsible for massive skin destruction. The genome sequencing of M. ulcerans has recently been accomplished (http://genolist.

View Article and Find Full Text PDF

The role of biofilms in the pathogenesis of mycobacterial diseases remains largely unknown. Mycobacterium ulcerans, the etiological agent of Buruli ulcer, a disfiguring disease in humans, adopts a biofilm-like structure in vitro and in vivo, displaying an abundant extracellular matrix (ECM) that harbors vesicles. The composition and structure of the ECM differs from that of the classical matrix found in other bacterial biofilms.

View Article and Find Full Text PDF

Split-protein sensors have become an important tool for the analysis of protein-protein interactions in living cells. We present here a combinatorial method for the generation of new split-protein sensors and demonstrate its application toward the (beta/alpha)(8)-barrel enzyme N-(5'-phosphoribosyl)-anthranilate isomerase Trp1p from Saccharomyces cerevisiae. The generated split-Trp protein sensors allow for the detection of protein-protein interactions in the cytosol as well as the membrane by enabling trp1 cells to grow on medium lacking tryptophan.

View Article and Find Full Text PDF

Combinatorial mutagenesis was used to investigate the role of three key residues in cytochrome c peroxidase (CCP) from Saccharomyces cerevisiae, Arg48, Trp51, and Trp191, in control of the reactivity and selectivity of the heme-containing enzyme. Libraries were prepared by randomization of these residues and were subsequently screened for activity against the phenolic substrate guaiacol. Screening conditions were employed that favor either mutants with high activity or those with both high activity and stability of the reactive enzyme intermediates.

View Article and Find Full Text PDF