When the ancestors of men moved from aquatic habitats to the drylands, their evolutionary strategy to restrict water loss is to seal the skin surface with lipids. It is unknown how these rigid ceramide-dominated lipids with densely packed chains squeeze through narrow extracellular spaces and how they assemble into their complex multilamellar architecture. Here it is shown that the human corneocyte lipid envelope, a monolayer of ultralong covalently bound lipids on the cell surface protein, templates the functional barrier assembly by partly fluidizing and rearranging the free extracellular lipids in its vicinity during the sculpting of a functional skin lipid barrier.
View Article and Find Full Text PDFTo enhance dissolution rate of meloxicam (MX), a poorly soluble model drug, a natural polysaccharide excipient chitosan (CH) is employed in this work as a carrier to prepare binary interactive mixtures by either mixing or co-milling techniques. The MX-CH mixtures of three different drug loads were characterized for morphological, granulometric, and thermal properties as well as drug crystallinity. The relative dissolution rate of MX was determined in phosphate buffer of pH 6.
View Article and Find Full Text PDFThe aim of the work was to analyze the influence of process parameters of high shear granulation on the process yield and on the morphology of granules on the basis of dynamic image analysis. The amount of added granulation liquid had a significant effect on all monitored granulometric parameters and caused significant changes in the yield of the process. In regard of the shape, the most spherical granules with the smoothest surface were formed at a liquid to solid ratio of ≈1.
View Article and Find Full Text PDFThe utilization of co-processed excipients (CPEs) represents a novel approach to the preparation of orally disintegrating tablets by direct compression. Flow, consolidation, and compression properties of four lactose-based CPEs-Cellactose 80, CombiLac, MicroceLac 100, and StarLac-were investigated using different methods, including granulometry, powder rheometry, and tablet compaction under three pressures. Due to the similar composition and the same preparation technique (spray drying), the properties of CPEs and their compacts were generally comparable.
View Article and Find Full Text PDFThe aim of this systematic study was to analyze the granulometric and rheological behavior of tableting mixtures in relation to tabletability by single tablet and lab-scale batch compression with an eccentric tablet machine. Three mixtures containing 33, 50, and 66% of the cohesive drug paracetamol were prepared. The high compressibility of the powder mixtures caused problems with overcompaction or lamination in the single tablet compression method; due to jamming of the material during the filling of the die, the lab-scale batch compression was impossible.
View Article and Find Full Text PDFAlbeit the preparation of liquisolid systems represents an innovative approach to enhance the dissolution of poorly soluble drugs, their broader utilization is still limited mainly due to the problematic conversion of the liquid into freely flowing and readily compressible powder. Accordingly, the presented study aims to determine the optimal carrier/coating material ratio (R value) for formulations based on magnesium aluminometasilicate (NUS2) loaded with polyethylene glycol 400. Four commercially available colloidal silica were used as coating materials in nine different R values (range of 5 - 100).
View Article and Find Full Text PDFMacrophages possess an innate ability to scavenge heterogenous objects from the systemic circulation and to regulate inflammatory diseases in various organs via cytokine production. That makes them attractive targets for nanomedicine-based therapeutic approaches to inflammatory diseases. In the present study, we have prepared several different poly(lactic-co-glycolic acid) (PLGA) polymer nanospheres for macrophage-targeted drug delivery using both nanoprecipitation and emulsification solvent evaporation methods.
View Article and Find Full Text PDFAs coprocessed excipients (CPE) gain a lot of focus recently, this article compares three commercially available CPE of Avicel brand, namely, CE 15, DG, and HFE 102. Comparison is based on measured physical properties of coprocessed mixtures, respectively, flow properties, pycnometric density, mean particle size, specific surface area, moisture content, hygroscopicity, solubility, pH leaching, electrostatic charge, SEM images, and DSC. Tablets were made employing three pressure sets.
View Article and Find Full Text PDFThis paper deals with a study of the novel coprocessed dry binder Combilac®, which contains 70% of α-lactose monohydrate, 20% of microcrystalline cellulose and 10% of native corn starch. These tests include flow properties, compressibility, lubricant sensitivity, tensile strength and disintegration time of tablets. Compressibility is evaluated by means of the energy profile of compression process, test of stress relaxation and tablet strength.
View Article and Find Full Text PDF