Gold nanoparticles (AuNPs) are employed in numerous applications, including optics, biosensing and catalysis. Here, we demonstrate the stabilizer-free electrochemical synthesis of AuNPs inside nanoliter-sized reactors. Droplets encapsulating a gold precursor are formed on a microfluidic device and exposed to an electrical current by guiding them through a pair of electrodes.
View Article and Find Full Text PDFSingle-cell profiling provides insights into cellular behaviour that macroscale cell cultures and bulk measurements cannot reveal. In the context of personalized cancer treatment, the profiling of individual tumour cells may lead to higher success rates for therapies by rapidly selecting the most efficacious drugs. Currently, genomic analysis at the single-cell level is available through highly sensitive sequencing approaches.
View Article and Find Full Text PDFHere, we present a multifunctional microfluidic device whose integrative design enables to combine cell culture studies and quantitative single cell biomolecule analysis. The platform consists of 32 analysis units providing two key features; first, a micrometer-sized trap for hydrodynamic capture of a single Saccharomyces cerevisiae (S. cerevisiae) yeast cell; second, a convenient double-valve configuration surrounding the trap.
View Article and Find Full Text PDFAn integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET) sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution.
View Article and Find Full Text PDFA precise characterisation of microreactors can be achieved by determining the residence time distribution as one of the most important flow characteristics. An approach specially designed for microreactor applications was developed, which employs a tracer 'injection' using the optical activation of a caged fluorescent dye. Furthermore, the effect of the laminar flow on the determination of the residence time distribution in microreactors has been taken into account during the measurements and their interpretation to fulfill the requirements of the so-called 'mixing-cup-problem' on the microscale.
View Article and Find Full Text PDFIn this study we present a simple approach for fast and localised heating that relies on the strong absorbance of infrared light by microsized patterned surfaces ("micro-hotplates"). Two different materials, micro-arrays of carbon and gold, were tested with respect to their absorbance of the 830 nm diode laser light and their applicability. Both materials were found to be suitable for inducing controlled heating to a temperature increase of more than 10 degrees C within less than a second.
View Article and Find Full Text PDF