The harmful effects of silver nanoparticles (AgNPs) have been confirmed in many organisms, but the mechanism of their toxicity is not yet fully understood. In biological systems, AgNPs tend to aggregate and dissolve, so they are often stabilized by coatings that influence their physico-chemical properties. In this study, the effects of AgNPs with different coatings [polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB)] on oxidative stress appearance and proteome changes in tobacco () seedlings have been examined.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are used in a wide range of consumer products because of their excellent antimicrobial properties. AgNPs released into the environment are prone to transformations such as aggregation, oxidation, or dissolution so they are often stabilised by coatings that affect their physico-chemical properties and change their effect on living organisms. In this study we investigated the stability of polyvinylpyrrolidone (PVP) and cetyltrimethylammonium bromide (CTAB) coated AgNPs in an exposure medium, as well as their effect on tobacco germination and early growth.
View Article and Find Full Text PDFSince silver nanoparticles (AgNPs) are a dominant nanomaterial in consumer products, there is growing concern about their impact on the environment. Although numerous studies on the effects of AgNPs on living organisms have been conducted, the interaction of AgNPs with plants has not been fully clarified. To reveal the plant mechanisms activated after exposure to AgNPs and to differentiate between effects specific to nanoparticles and ionic silver, we investigated the physiological, ultrastructural and proteomic changes in seedlings of tobacco (Nicotiana tabacum) exposed to commercial AgNPs and ionic silver (AgNO) from the seed stage.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2018
The small size of nanoparticles (NPs), with dimensions between 1 and 100 nm, results in unique chemical and physical characteristics, which is why they are implemented in various consumer products. Therefore, an important concern is the potential detrimental impact of NPs on the environment. As plants are a vital part of ecosystem, investigation of the phytotoxic effects of NPs is particularly interesting.
View Article and Find Full Text PDFThe objective of the present study was to investigate the effects of cadmium-zinc (Cd-Zn) interactions on their uptake, oxidative damage of cell macromolecules (lipids, proteins, DNA) and activities of antioxidative enzymes in tobacco seedlings as well as roots and leaves of adult plants. Seedlings and plants were exposed to Cd (10 µM and 15 µM) and Zn (25 µM and 50 µM) as well as their combinations (10 µM or 15 µM Cd with either 25 µM or 50 µM Zn). Measurement of metal accumulation exhibited that Zn had mostly positive effect on Cd uptake in roots and seedlings, while Cd had antagonistic effect on Zn uptake in leaves and roots.
View Article and Find Full Text PDFThe fate of chloroplast DNA (cpDNA) during plastid development and conversion between various plastid types is still not very well understood. This is especially true for the cpDNA found in plastids of naturally senescing leaves. Here, we describe changes in plastid nucleoid structure accompanied with cpDNA degradation occurring during natural senescence of the free-growing deciduous woody species Acer pseudoplatanus L.
View Article and Find Full Text PDFNew platelet glycoprotein IIb/IIIa (GP IIb/IIIa, integrin alpha(IIb)beta3) antagonists were prepared on a 2H-1,4-benzoxazine-3(4H)-one scaffold. Their anti-aggregatory activities in human platelet rich plasma and their affinity towards alpha(IIb)beta3 and alpha(V)beta3 integrins were assessed. Various substitution positions and side chain variations were studied.
View Article and Find Full Text PDFThe proline peptide bond was shown by 2D proton NMR studies to exist exclusively in the trans conformation in benzyl (2S)-1-[[(2S)-2-methyl-6-nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl]-2-pyrrolidinecarboxylate [(S,S)-11], benzyl (2S)-1-[[(2S)-2-methyl-7-nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl]-2-pyrrolidinecarboxylate [(S,S)-9], and in the corresponding 6-amino and 7-amino carboxylic acids (S,S)-3 and (S,S)-4. On the other hand, the diastereomers (R,S)-11 and (R,S)-9 containing an (R)[2-methyl-6/7-nitro-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl moiety, and the diastereoisomers (R,S)-3 and (R,S)-4 incorporating an (R)[6/7-amino-2-methyl-3-oxo-3,4-dihydro-2H-1,4-benzoxazin-2-yl]carbonyl moiety were found to exist as equilibria of trans(63-83%) and cis(17-37%) isomers. These conformationally defined templates were applied in the construction of RGD mimetics possessing antagonistic activity at the platelet fibrinogen receptor.
View Article and Find Full Text PDF