Self-association of aminopyrazole peptide hybrid 1 leads to stacked nanorosettes. This remarkable, well-ordered structure obeys the laws of nucleic acid self-assembly. In a strictly hierarchical process, formation of aminopyrazole "base" triplets via a hydrogen bond network is accompanied by pi-stacking with a second rosette and final dimerization of two double rosettes to a four-layer superstructure, stabilized by a six-fold half-crown alkylammonium lock.
View Article and Find Full Text PDFAminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form.
View Article and Find Full Text PDFLittle is known about the precise mechanism of action of beta-sheet ligands, hampered by the notorious solubility problems involved with protein misfolding and amyloid formation. Recently the nucleation site for the pathogenic aggregation of the Alzheimer's peptide was identified as the KLVFF sequence in the central region of Abeta. A combination of two aminopyrazole ligands with di- or tripeptides taken from this key fragment now furnished water-soluble Abeta-specific ligands which allow model investigations in water.
View Article and Find Full Text PDFA new concept is introduced for the rational design of beta-sheet ligands, which prevent protein aggregation. Oligomeric acylated aminopyrazoles with a donor-acceptor-donor (DAD) hydrogen bond pattern complementary to that of a beta-sheet efficiently block the solvent-exposed beta-sheet portions in Abeta-(1-40) and thereby prevent formation of insoluble protein aggregates. Density gradient centrifugation revealed that in the initial phase, the size of Abeta aggregates was efficiently kept between the trimeric and 15-meric state, whereas after 5 days an additional high molecular weight fraction appeared.
View Article and Find Full Text PDFPyrazole amino acid oligoamides were prepared on polyethylene glycol starting from nitro pyrazole carboxylic acids or protected pyrazole amino acids. The polymer support facilitates product isolation during synthesis and makes the target oligoamides soluble in chloroform and water. This allows the determination of their binding properties towards peptides.
View Article and Find Full Text PDF