This study assesses the impact of different support materials (Mutag BioChip™, expanded clay and activated carbon) on microbial hydrogen production in an anaerobic packed-bed reactor (APBR) treating synthetic waste water containing glucose as the main carbon source at low pH value. The APBRs were inoculated with acid pretreated anaerobic sludge and operated at pH value of 4±0.2 and hydraulic retention time (HRT) of 3h.
View Article and Find Full Text PDFHydrogen could be alternative energy carrier in the future as well as source for chemical and fuel synthesis due to its high energy content, environmentally friendly technology and zero carbon emissions. In particular, conversion of organic substrates to hydrogen via dark fermentation process is of great interest. The aim of this study was fermentative hydrogen production using anaerobic mixed culture using different carbon sources (mono and disaccharides) and further optimization by varying a number of operating parameters (pH value, temperature, organic loading, mixing intensity).
View Article and Find Full Text PDFComplex waste streams originating from extraction processes containing residual organic solvents and increased C/N ratios have not yet been considered as feedstock for biogas production to a great extent. In this study, spent rosehip (Rosa canina L.) solid residue (64%VS, 22 MJ/kg HHV, 30C/1N) was obtained from an industrial ethanol aided extraction process, and extensively examined in an automated batch bioreactor system for biogas production.
View Article and Find Full Text PDF