Phytochromes are photoreceptor proteins in plants, fungi, and bacteria. They can adopt two photochromic states with differential biochemical responses. The structural changes transducing the signal from the chromophore to the biochemical output modules are poorly understood due to challenges in capturing structures of the dynamic, full-length protein.
View Article and Find Full Text PDFX-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment.
View Article and Find Full Text PDFProteins are dynamic objects and undergo conformational changes when functioning. These changes range from interconversion between states in equilibrium to ultrafast and coherent structural motions within one perturbed state. Time-resolved serial femtosecond crystallography at free-electron X-ray lasers can unravel structural changes with atomic resolution and down to femtosecond time scales.
View Article and Find Full Text PDFThe phenolic drug molecules can be metabolized, among others, by the small intestine's enterocytes. The conjugation reactions (glucuronidation and sulfation) show great importance in these transformations, although the oxidation reactions can be significant. These processes are dependent on the substituents of the phenolic compounds or the reacting functional groups (hydroxyl or carboxyl).
View Article and Find Full Text PDF