Publications by authors named "Petra Merschak"

Azole antifungals remain the "gold standard" therapy for invasive aspergillosis. The world-wide emergence of isolates resistant to this drug class, however, developed into a steadily increasing threat to human health over the past years. In , major mechanisms of resistance involve increased expression of encoding one of two isoenzymes targeted by azoles.

View Article and Find Full Text PDF

The ergosterol pathway is a promising target for the development of new antifungals since its enzymes are essential for fungal cell growth. Appropriate screening assays are therefore needed that allow the identification of potential inhibitors. We developed a whole-cell screening method, which can be used to identify compounds interacting with the enzymes of isoprenoid biosynthesis, an important part of the ergosterol biosynthesis pathway.

View Article and Find Full Text PDF

Inducible promoters are indispensable elements when considering the possibility to modulate gene expression on demand. Desirable traits of conditional expression systems include their capacity for tight downregulation, high overexpression, and in some instances for fine-tuning, to achieve a desired product's stoichiometry. Although the number of inducible systems is slowly increasing, suitable promoters comprising these features are rare.

View Article and Find Full Text PDF

Aspergillus fumigatus is one of the deadliest fungal species, causing hundreds of thousands of deaths each year. Because azoles provide the preferred first-line option for treatment of aspergillosis, the increase in rates of resistance and the poor therapeutic outcomes for patients infected with a resistant isolate constitute a serious global health threat. Azole resistance is frequently associated with specific tandem repeat duplications of a promoter element upstream of , the gene that encodes the target for this drug class in A.

View Article and Find Full Text PDF

The hygromycin B phosphotransferase gene from and the pyrithiamine resistance gene from are two dominant selectable marker genes widely used to genetically manipulate several fungal species. Despite the recent development of CRISPR/Cas9 and marker-free systems, in vitro molecular tools to study  , which is a saprophytic fungus causing life-threatening diseases in immunocompromised hosts, still rely extensively on the use of dominant selectable markers. The limited number of drug selectable markers is already a critical aspect, but the possibility that their introduction into a microorganism could induce enhanced virulence or undesired effects on metabolic behavior constitutes another problem.

View Article and Find Full Text PDF

The fungal class 1 lysine deacetylase (KDAC) RpdA is a promising target for prevention and treatment of invasive fungal infection. RpdA is essential for survival of the most common air-borne mold pathogen and the model organism . In , RpdA depletion induced production of previously unknown small bioactive substances.

View Article and Find Full Text PDF

In filamentous fungi, arginine methylation has been implicated in morphogenesis, mycotoxin biosynthesis, pathogenicity, and stress response although the exact role of this posttranslational modification in these processes remains obscure. Here, we present the first genome-wide transcriptome analysis in filamentous fungi that compared expression levels of genes regulated by type I and type II protein arginine methyltransferases (PRMTs). In Aspergillus nidulans, three conserved type I and II PRMTs are present that catalyze asymmetric or symmetric dimethylation of arginines.

View Article and Find Full Text PDF

beta-Lactoglobulin (BLG) is a member of the lipocalin protein family and a major food-borne allergen in humans. Numerous in vitro studies have suggested a role for BLG in molecular transport processes; however, its physiological role remains enigmatic. A cellular receptor for BLG has been proposed, but has not yet been identified.

View Article and Find Full Text PDF

There is a lack of relevant methods to assess the colonization of textiles by skin bacteria because present methods are mainly culture-based procedures. Therefore, the goal of this study was to develop a fast and sensitive culture-independent procedure for the quantification of microbial colonization and growth on textiles. We have established a suitable protocol to use DNA quantification as a reliable method for in vitroand in vivoinvestigations of textiles.

View Article and Find Full Text PDF

Multiangle laser light scattering and fluorescence anisotropy decay measurements clarified the oligomeric states of native and recombinant tear lipocalin (lipocalin-1, TL). Native TL is monomeric. Recombinant TL (5-68 microM) with or without the histidine tag shows less than 7% dimer formation that is not in equilibrium with the monomeric form.

View Article and Find Full Text PDF

Human tear lipocalin (TL; also known as Lcn1) is a secretory protein present in large amounts in fluids that cover epithelial surfaces such as tears and respiratory secretions. It is supposed to act as a physiological scavenger of hydrophobic, potentially harmful molecules, but there is evidence that it also inhibits bacterial growth. In the present study, we reconsidered the possibility that TL might interfere with microbial growth by scavenging of siderophores, as described for human neutrophil gelatinase-associated lipocalin (NGAL).

View Article and Find Full Text PDF