Wound healing is a complex multiphase process which can be hampered by many factors including impaired local circulation, hypoxia, infection, malnutrition, immunosuppression, and metabolic dysregulation in diabetes. Redox dysregulation is a common feature of many skin diseases demonstrated by virtually all cell types in the skin with overproduction of reactive oxygen and nitrogen species. The objective of this study was to characterize the redox environment in wound fluids and sera from patients suffering from chronic leg ulcers ( = 19) and acute wounds (bulla fluids from second degree burns; = 11) with serum data also compared to those from healthy volunteers ( = 7).
View Article and Find Full Text PDFDifferences in the expression profiles of miRNAs and mRNAs have been reported in colorectal cancer. Nevertheless, information on important miRNA-mRNA regulatory modules in colorectal cancer is still lacking. In this regard, this study presents an application of the RH-SAC algorithm on miRNA and mRNA expression data for identification of potential miRNA-mRNA modules.
View Article and Find Full Text PDFPurpose: Diabetes is accompanied by fundamental rearrangements in redox homeostasis. Hyperglycemia triggers the production of reactive oxygen and nitrogen species which contributes to tissue damage in various target organs. Proliferative diabetic retinopathy (PDR) is a common manifestation of diabetic complications but information on the possible role of reactive intermediates in this condition with special regard to the involvement of the vitreous in PDR-associated redox alterations is scarce.
View Article and Find Full Text PDFA combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing.
View Article and Find Full Text PDFAntracyclines are effective antitumor agents. One of the most commonly used antracyclines is doxorubicin, which can be successfully used to treat a diverse spectrum of tumors. Application of these drugs is limited by their cardiotoxic effect, which is determined by a lifetime cumulative dose.
View Article and Find Full Text PDFContrary to common perception bone is a dynamic organ flexibly adapting to changes in mechanical loading by shifting the delicate balance between bone formation and bone resorption carried out by osteoblasts and osteoclasts, respectively. In the past decades numerous studies demonstrating production of reactive oxygen or nitrogen intermediates, effects of different antioxidants, and involvement of prototypical redox control mechanisms (Nrf2-Keap1, Steap4, FoxO, PAMM, caspase-2) have proven the central role of redox regulation in the bone. Poly(ADP-ribosyl)ation (PARylation), a NAD-dependent protein modification carried out by poly(ADP-ribose) polymerase (PARP) enzymes recently emerged as a new regulatory mechanism fine-tuning osteoblast differentiation and mineralization.
View Article and Find Full Text PDFPoly(ADP-ribosyl)ation (PARylation) is a protein modification reaction regulating various diverse cellular functions ranging from metabolism, DNA repair and transcription to cell death. We set out to investigate the role of PARylation in wound healing, a highly complex process involving various cellular and humoral factors. We found that topically applied poly[ADP-ribose] polymerase (PARP) inhibitors 3-aminobenzamide and PJ-34 accelerated wound closure in a mouse model of excision wounding.
View Article and Find Full Text PDFScreening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation.
View Article and Find Full Text PDFPoly(ADP-ribosyl)ation (PARylation) is a NAD(+)-dependent protein modification carried out by PARP [poly(ADP-ribose) polymerase] enzymes. Here we set out to investigate whether PARylation regulates UVB-induced cell death in primary human keratinocytes. We used the benchmark PARP inhibitor 3-aminobenzamide (3AB) and a more potent and specific inhibitor PJ34 and found that UVB (0.
View Article and Find Full Text PDFObjective: Perinatal asphyxia is characterized by an inflammatory response that contributes to cerebral injury. Therapeutic hypothermia improves neurological outcome in asphyxiated term neonates, but its clear effect on the inflammatory response is unknown.
Subjects And Methods: A range of cytokines and cortisol levels were measured at the 6th, 12th and 24th postnatal hours in neonates with hypoxic-ischemic encephalopathy treated with standard intensive care on hypothermia (n = 10) or normothermia (n = 8).
Cigarette smoking can contribute to the development of many human diseases such as cardiovascular disease, lung cancer, asthma, and chronic obstructive pulmonary disease. Thousands of compounds are present in cigarette smoke, including a large number of reactive oxygen species that can cause DNA damage, leading to the activation of poly(ADP-ribose) polymerase (PARP) enzymes. The PAR polymer is degraded by poly(ADP-ribose) glycohydrolase (PARG).
View Article and Find Full Text PDFThe goal of the current study, conducted in freshly isolated thymocytes was (1) to investigate the possibility that the activation of poly(ADP-ribose) polymerase-1 (PARP-1) in an intact cell can be regulated by protein kinase C (PKC) mediated phosphorylation and (2) to examine the consequence of this regulatory mechanism in the context of cell death induced by the genotoxic agent. In cells stimulated by the PKC activating phorbol esters, DNA breakage was unaffected, PARP-1 was phosphorylated, 1-methyl-3-nitro-1-nitrosoguanidine-induced PARP activation and cell necrosis were suppressed, with all these effects attenuated by the PKC inhibitors GF109203X or Gö6976. Inhibition of cellular PARP activity by PKC-mediated phosphorylation may provide a plausible mechanism for the previously observed cytoprotective effects of PKC activators.
View Article and Find Full Text PDF