Overexpression and purification of membrane proteins has been a bottleneck for their functional and structural study for a long time. Both homologous and heterologous expression of membrane proteins with suitable tags for purification presents unique challenges for cloning and expression. Saccharomyces cerevisiae is a potential host system with significant closeness to higher eukaryotes and provides opportunity for attempts to express membrane proteins.
View Article and Find Full Text PDFPdr5 is a plasma membrane-bound ABC transporter from Saccharomyces cerevisiae and is involved in the phenomenon of resistance against xenobiotics, which are clinically relevant in bacteria, fungi, and humans. Many fungal ABC transporters such as Pdr5 display an inherent asymmetry in their nucleotide-binding sites (NBS) unlike most of their human counterparts. This degeneracy of the NBSs is very intriguing and needs explanation in terms of structural and functional relevance.
View Article and Find Full Text PDFThe pleiotropic drug resistance network in budding yeast presents a first line of defense against xenobiotics, which is formed by primary and secondary active membrane transporters. Among these transporters, the ABC transporter Pdr5 is a key component, because it confers resistance against a broad spectrum of such cytotoxic agents. Furthermore, it represents a model system for homologous transporters from pathogenic fungi and has been intensively studied in the past.
View Article and Find Full Text PDFA subset of the family of ATP-binding cassette (ABC) transporters has been in focus owing to their involvement in conferring multidrug resistance in cancer cells and among immune compromised individuals. Saccharomyces cerevisiae is protected against xenobiotics by similar machineries that are part of the pleitropic drug resistance (PDR) network. The ABC transporter Pdr5 is an important member of this PDR network in yeast and is involved in cellular detoxification by the efflux of a wide variety of drugs and substrates.
View Article and Find Full Text PDFMultidrug resistance is a major challenge in the therapy of cancer and pathogenic fungal infections. More than three decades ago, P-glycoprotein was the first identified multidrug transporter. It has been studied extensively at the genetic and biochemical levels ever since.
View Article and Find Full Text PDFThe yeast ABC transporter Pdr5 plays a major role in drug resistance against a large number of structurally unrelated compounds. Although Pdr5 has been extensively studied, many important aspects regarding its molecular mechanisms remain unresolved. For example, a striking degeneration of conserved amino acid residues exists in the nucleotide binding domains (NBDs), but their functional relevance is unknown.
View Article and Find Full Text PDF