Haemophilus influenzae protein F (PF) is an important virulence factor interacting with laminin, an extracellular matrix protein ubiquitously expressed in the respiratory tract. Here we defined PF orthologs in Pseudomonas aeruginosa, Moraxella catarrhalis, and Staphylococcus aureus, bacteria that occasionally colonize and infect the human airways. Despite low sequence homology (48.
View Article and Find Full Text PDFUnlabelled: In Escherichia coli or Salmonella enterica, the stress-associated mammalian hormones epinephrine (E) and norepinephrine (NE) trigger a signaling cascade by interacting with the QseC sensor protein. Here we show that Vibrio cholerae, the causative agent of cholera, exhibits a specific response to E and NE. These catecholates (0.
View Article and Find Full Text PDFVibrio cholerae is motile by means of its single polar flagellum which is driven by the sodium-motive force. In the motor driving rotation of the flagellar filament, a stator complex consisting of subunits PomA and PomB converts the electrochemical sodium ion gradient into torque. Charged or polar residues within the membrane part of PomB could act as ligands for Na+, or stabilize a hydrogen bond network by interacting with water within the putative channel between PomA and PomB.
View Article and Find Full Text PDFVibrio cholerae is a Gram-negative bacterium that lives in brackish or sea water environments. Strains of V. cholerae carrying the pathogenicity islands infect the human gut and cause the fatal disease cholera.
View Article and Find Full Text PDFThe Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I).
View Article and Find Full Text PDFVibrio cholerae is motile by its polar flagellum, which is driven by a Na(+)-conducting motor. The stators of the motor, composed of four PomA and two PomB subunits, provide access for Na(+) to the torque-generating unit of the motor. To characterize the Na(+) pathway formed by the PomAB complex, we studied the influence of chloride salts (chaotropic, Na(+), and K(+)) and pH on the motility of V.
View Article and Find Full Text PDFBacteria need signal transducing systems to respond to environmental changes. Next to one- and two-component systems, alternative σ factors of the extra-cytoplasmic function (ECF) protein family represent the third fundamental mechanism of bacterial signal transduction. A comprehensive classification of these proteins identified more than 40 phylogenetically distinct groups, most of which are not experimentally investigated.
View Article and Find Full Text PDF