Oil and gas industries in the Northern Atlantic Ocean have gradually moved closer to the Arctic areas, a process expected to be further facilitated by sea ice withdrawal caused by global warming. Copepods of the genus Calanus hold a key position in these cold-water food webs, providing an important energetic link between primary production and higher trophic levels. Due to their ecological importance, there is a concern about how accidental oil spills and produced water discharges may impact cold-water copepods.
View Article and Find Full Text PDFThis study presents eight new high-quality de novo transcriptomes from six co-occurring species of calanoid copepods, the first published for Neocalanus plumchrus, N. cristatus, Eucalanus bungii and Metridia pacifica and additional ones for N. flemingeri and Calanus marshallae.
View Article and Find Full Text PDFA simple hydrodynamic model of predator-prey interactions between larval clownfish and copepod prey is used to elucidate how larval fish capture highly evasive copepods. Fish larvae are considered to be suction feeders; however, video observations revealed that successful captures by clownfish larvae were preceded by rapidly accelerating lunges (ram), while the role of suction to draw prey into the fish's mouth was less clear. Simulations were made of the fish's strike, varying strengths of ram and suction to characterize optimal strategies for copepod capture given known evasive capabilities.
View Article and Find Full Text PDFMany arthropods undergo a seasonal dormancy termed "diapause" to optimize timing of reproduction in highly seasonal environments. In the North Atlantic, the copepod Calanus finmarchicus completes one to three generations annually with some individuals maturing into adults, while others interrupt their development to enter diapause. It is unknown which, why and when individuals enter the diapause program.
View Article and Find Full Text PDFHigh-throughput RNA sequencing (RNA-Seq) has transformed the ecophysiological assessment of individual plankton species and communities. However, the technology generates complex data consisting of millions of short-read sequences that can be difficult to analyze and interpret. New bioinformatics workflows are needed to guide experimentation, environmental sampling, and to develop and test hypotheses.
View Article and Find Full Text PDFPost-embryonic diapause in copepods is an adaptation that allows species in the copepod family Calanidae to thrive in high-latitude environments by transforming a short spring phytoplankton bloom into large numbers of lipid-rich individuals capable of surviving a long period of starvation. The copepods, with their high-energy lipid reservoirs, are a critical food source for higher trophic levels, making the Calanidae a key component of high-latitude marine ecosystems. The physiological ecology of the developmental program remains poorly understood.
View Article and Find Full Text PDFMarine pelagic species are being increasingly challenged by environmental change. Their ability to persist will depend on their capacity for physiological acclimatization. Little is known about limits of physiological plasticity in key species at the base of the food web.
View Article and Find Full Text PDFPredatory fishes avoid detection by prey through a stealthy approach, followed by a rapid and precise fast-start strike. Although many first-feeding fish larvae strike at non-evasive prey using an S-start, the clownfish feeds on highly evasive calanoid copepods from a J-shaped position, beginning 1 day post-hatch (dph). We quantified this unique strike posture by observing successful predatory interactions between larval clownfish (1 to 14 dph) and three developmental stages of the calanoid copepod The J-shaped posture of clownfish became less tightly curled (more L-shaped) during larval development.
View Article and Find Full Text PDFIn the coevolution of predator and prey, different and less well-understood rules for threat assessment apply to freely suspended organisms than to substrate-dwelling ones. Particularly vulnerable are small prey carried with the bulk movement of a surrounding fluid and thus deprived of sensory information within the bow waves of approaching predators. Some planktonic prey have solved this apparent problem, however.
View Article and Find Full Text PDFClimate change is warming the oceans, increasing carbon dioxide partial pressure and reducing nutrient recycling from deep layers. This will affect carbon (C) and phosphorus (P) availability in the oceans, thus, altering the balance between the nutrient content of consumers and their food resource. The combined effects of food quality and temperature have been investigated for adult copepods; however, nauplii, the early developmental stages of copepods, often far outnumber adults, grow more rapidly and have a higher phosphorus body content and demand than later life stages.
View Article and Find Full Text PDFDue to its sensitivity to many environmental and anthropogenic stressors, including a wide range of chemical compounds, Hyalella azteca, a freshwater amphipod, has emerged as one of the most commonly used invertebrates for ecotoxicological assessment.Peptidergic signaling systems are key components in the control of organism-environment interactions, and there is a growing literature suggesting that they are targets of a number of aquatic toxicants.Interestingly, and despite its model species status in the field of ecotoxicology, little is known about the peptide hormones of H.
View Article and Find Full Text PDFCopepod crustaceans are an abundant and ecologically significant group whose basic biology is guided by numerous visually guided behaviors. These behaviors are driven by copepod eyes, including naupliar eyes and Gicklhorn's organs, which vary widely in structure and function among species. Yet little is known about the molecular aspects of copepod vision.
View Article and Find Full Text PDFToxin resistance is a recurring evolutionary response by predators feeding on toxic prey. These adaptations impact physiological interaction and community ecology. Mechanisms for resistance vary depending on the predator and the nature of the toxin.
View Article and Find Full Text PDFCoral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function.
View Article and Find Full Text PDFAlthough metazoan animals in the mesopelagic zone play critical roles in deep pelagic food webs and in the attenuation of carbon in midwaters, the diversity of these assemblages is not fully known. A metabarcoding survey of mesozooplankton diversity across the epipelagic, mesopelagic and upper bathypelagic zones (0-1500 m) in the North Pacific Subtropical Gyre revealed far higher estimates of species richness than expected given prior morphology-based studies in the region (4,024 OTUs, 10-fold increase), despite conservative bioinformatic processing. Operational taxonomic unit (OTU) richness of the full assemblage peaked at lower epipelagic-upper mesopelagic depths (100-300 m), with slight shoaling of maximal richness at night due to diel vertical migration, in contrast to expectations of a deep mesopelagic diversity maximum as reported for several plankton groups in early systematic and zoogeographic studies.
View Article and Find Full Text PDFRapid conduction in myelinated nerves keeps distant parts of large organisms in timely communication. It is thus surprising to find myelination in some very small organisms. Calanoid copepods, while sharing similar body plans, are evenly divided between myelinate and amyelinate taxa.
View Article and Find Full Text PDFInshore and offshore waters of the Gulf of Maine (USA) have spring/summer harmful algal blooms (HABs) of the toxic dinoflagellate , which is responsible for paralytic shellfish poisoning (PSP) in humans. The calanoid copepod co-occurs with during the seasonal blooms. At that time, population abundances are high, dominated by immature copepods preparing for diapause, and by actively-reproducing adults.
View Article and Find Full Text PDFCapture success and prey selectivity were investigated in clownfish Amphiprion ocellaris larvae using videography. Three prey types were tested using developmental stages (nauplii, copepodites and adults) of the copepod Parvocalanus crassirostris. Predatory abilities improved rapidly between days 1 and 14 post-hatch.
View Article and Find Full Text PDFCalanus finmarchicus, an abundant calanoid copepod in the North Atlantic Ocean, is both a major grazer on phytoplankton and an important forage species for invertebrate and vertebrate predators. One component of the life history of C. finmarchicus is the overwintering dormancy of sub-adults, a feature key for the annual recruitment of this species in early spring.
View Article and Find Full Text PDFThe effect of the dinoflagellate, Alexandrium fundyense, on relative expression of glutathione S-transferase (GST) transcripts was examined in the copepod Calanus finmarchicus. Adult females were fed for 5-days on one of three experimental diets: control (100% Rhodomonas spp.), low dose of A.
View Article and Find Full Text PDF