Biochim Biophys Acta Mol Basis Dis
March 2024
Liver sinusoidal endothelial cells (LSECs) play a crucial role in regulating the hepatic function. Endoglin (ENG), a transmembrane glycoprotein, was shown to be related to the development of endothelial dysfunction. In this study, we hypothesized the relationship between changes in ENG expression and markers of liver sinusoidal endothelial dysfunction (LSED) during liver impairment.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the efficacy of potential candidate molecules or their combinations against strong alkylation agent sulfur mustard (SM) on the human lung alveolar epithelial cell line A-549. Candidate molecules were chosen on the basis of their previously observed protective effects in vitro. The tested compounds, including antioxidants, sulfhydryl or other sulfur-containing molecules, nitrogen-containing molecules, PARP inhibitors and a NO synthase inhibitor, were applicated 30min before SM treatment.
View Article and Find Full Text PDFA soluble form of endoglin (sEng) released into the circulation was suggested to be a direct inducer of endothelial dysfunction, inflammation and contributed to the development of hypertension by interfering with TGF-β signaling in cardiovascular pathologies. In the present study, we assessed the hypothesis that high sEng level-induced hypertension via a possible sEng interference with TGF-β signaling pathways may result in inflammatory, structural or fibrotic changes in hearts of Sol-Eng+ mice (mice with high levels of soluble endoglin) fed either chow or high-fat diet. Female Sol-Eng+ mice and their age matched littermates with low plasma levels of sEng were fed either chow or high-fat diet (HFD).
View Article and Find Full Text PDFAims: Endoglin is a transmembrane glycoprotein, that plays an important role in regulating endothelium. Proteolytic cleavage of membrane endoglin releases soluble endoglin (sEng), whose increased plasma levels have been detected in diseases related to the cardiovascular system. It was proposed that sEng might damage vascular endothelium, but detailed information about the potential mechanisms involved is not available.
View Article and Find Full Text PDFAims: A soluble form of endoglin (sEng) was proposed to participate in the induction of endothelial dysfunction in small blood vessels. Here, we tested the hypothesis that high levels of sEng combined with a high-fat diet induce endothelial dysfunction in an atherosclerosis-prone aorta.
Methods And Results: Six-month-old female and male transgenic mice overexpressing human sEng (Sol-Eng+) with low (Sol-Eng+low) or high (Sol-Eng+high) levels of plasma sEng were fed a high-fat rodent diet containing 1.
Increased levels of a soluble form of endoglin (sEng) circulating in plasma have been detected in various pathological conditions related to cardiovascular system. High concentration of sEng was also proposed to contribute to the development of endothelial dysfunction, but there is no direct evidence to support this hypothesis. Therefore, in the present work we analyzed whether high sEng levels induce endothelial dysfunction in aorta by using transgenic mice with high expression of human sEng.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related mortality in the world. Chemotherapy has been the mainstay of treatment for advanced non-small cell lung cancer (NSCLC) and platinum-based derivatives have been shown to improve overall survival. The aim of the present study was to investigate the DNA damage [single strand breaks (SSBs) and DNA crosslinks] and DNA repair in peripheral blood lymphocytes in patients with NSCLC treated with platinum derivatives using modified comet assay.
View Article and Find Full Text PDFThe comet assay or single-cell gel electrophoresis (SCGE) assay is now widely accepted as a standard method for assessing DNA damage in individual cells. It finds use in a broad variety of applications including human biomonitoring, genotoxicology, ecological monitoring and as a tool for investigation of DNA damage and repair in different cell types in response to a range of DNA-damaging agents. The comet assay should be eminently suitable for use in clinical practice since it is a relatively simple and inexpensive technique which requires only a few cells, and results can be obtained within a matter of hours.
View Article and Find Full Text PDF