Publications by authors named "Petra Eisele"

Activation of resident and infiltrating immune cells is a central event in training adaptation and other contexts of skeletal muscle repair and regeneration. A precise orchestration of inflammatory events in muscle fibers and immune cells is required after recurrent contraction-relaxation cycles. However, the mechanistic aspects of this important regulation remain largely unknown.

View Article and Find Full Text PDF

The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is abundantly expressed in trained muscles and regulates muscle adaptation to endurance exercise. Inversely, mice lacking a functional PGC-1α allele in muscle exhibit reduced muscle functionality and increased inflammation. In isolated muscle cells, PGC-1α and the related PGC-1β counteract the induction of inflammation by reducing the activity of the nuclear factor κB (NFκB).

View Article and Find Full Text PDF

Skeletal muscle is an organ involved in whole body movement and energy metabolism with the ability to dynamically adapt to different states of (dis-)use. At a molecular level, the peroxisome proliferator-activated receptor γ coactivators 1 (PGC-1s) are important mediators of oxidative metabolism in skeletal muscle and in other organs. Musculoskeletal disorders as well as obesity and its sequelae are associated with PGC-1 dysregulation in muscle with a concomitant local or systemic inflammatory reaction.

View Article and Find Full Text PDF

A persistent, low-grade inflammation accompanies many chronic diseases that are promoted by physical inactivity and improved by exercise. The beneficial effects of exercise are mediated in large part by peroxisome proliferator-activated receptor γ coactivator (PGC) 1α, whereas its loss correlates with propagation of local and systemic inflammatory markers. We examined the influence of PGC-1α and the related PGC-1β on inflammatory cytokines upon stimulation of muscle cells with TNFα, Toll-like receptor agonists, and free fatty acids.

View Article and Find Full Text PDF

T cells move randomly ("random-walk"), a characteristic thought to be integral to their function. Using migration assays and time-lapse microscopy, we found that CD8+ T cells lacking the lymph node homing receptors CCR7 and CD62L migrate more efficiently in transwell assays, and that these same cells are characterized by a high frequency of cells exhibiting random crawling activity under culture conditions mimicking the interstitial/extravascular milieu, but not when examined on endothelial cells. To assess the energy efficiency of cells crawling at a high frequency, we measured mRNA expression of genes key to mitochondrial energy metabolism (peroxisome proliferator-activated receptor gamma coactivator 1beta [PGC-1beta], estrogen-related receptor alpha [ERRalpha], cytochrome C, ATP synthase, and the uncoupling proteins [UCPs] UCP-2 and -3), quantified ATP contents, and performed calorimetric analyses.

View Article and Find Full Text PDF

The chemokine receptor CCR7, together with its ligands CCL19 and CCL21, is responsible for the correct homing and trafficking of dendritic cells and lymphocytes to secondary lymphoid tissues. Moreover, cancer cells can utilize CCR7 to metastasize to draining lymph nodes. However, information on CCR7 signaling leading to cell migration or receptor trafficking is sparse.

View Article and Find Full Text PDF