Publications by authors named "Petra Clara Arck"

Background: Early-life respiratory infections and asthma are major health burdens during childhood. Markers predicting an increased risk for early-life respiratory diseases are sparse. Here, we identified the predictive value of ultrasound-monitored fetal lung growth for the risk of early-life respiratory infections and asthma.

View Article and Find Full Text PDF

Pregnancy is likely nature's most elaborate model of dynamic adaptations occurring over a distinct period of time at specific sites of the maternal body. Spatially-resolved transcriptomic analyses now enable the comprehensive decoding of these dynamic adaptations during the early onset stages of mammalian pregnancies and throughout fetal development.

View Article and Find Full Text PDF

Background: Climate change, in particular the exposure to heat, impacts on human health and can trigger diseases. Pregnant people are considered a vulnerable group given the physiological changes during pregnancy and the potentially long-lasting consequences for the offspring. Evidence published to date on higher risk of pregnancy complications upon heat stress exposure are from geographical areas with high ambient temperatures.

View Article and Find Full Text PDF

Pregnant women are highly vulnerable to adverse environments. Accumulating evidence highlights that increasing temperatures associated with the ongoing climate change pose a threat to successful reproduction. Heat stress caused by an increased ambient temperature can result in adverse pregnancy outcomes, , preterm birth, stillbirth and low fetal weight.

View Article and Find Full Text PDF

Breast milk is a pivotal source to provide passive immunity in newborns over the first few months of life. Very little is known about the antibody transfer levels over the period of breastfeeding. We conducted a prospective study in which we evaluated concentrations of anti-SARS-CoV-2 Spike IgA and RBD IgG/M/A antibodies in maternal serum and breast milk over a duration of up to 6 months after delivery.

View Article and Find Full Text PDF

The conception of how the immune system is organized has been significantly challenged over the last years. It became evident that not all lymphocytes are mobile and recirculate through secondary lymphoid organs. Instead, subsets of immune cells continuously reside in tissues until being reactivated, e.

View Article and Find Full Text PDF

A wealth of innate and adaptive immune cells and hormones are involved in mounting tolerance towards the fetus, a key aspect of successful reproduction. We could recently show that the specific cross talk between the pregnancy hormone progesterone and dendritic cells (DCs) is significantly engaged in the generation of CD4 FoxP3 regulatory T (Treg) cells while a disruption led to placental alterations and intra-uterine growth restriction. Apart from progesterone, also glucocorticoids affect immune cell functions.

View Article and Find Full Text PDF

During mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc.

View Article and Find Full Text PDF

Pregnant women have been carefully observed during the COVID-19 pandemic, as the pregnancy-specific immune adaptation is known to increase the risk for infections. Recent evidence indicates that even though most pregnant have a mild or asymptomatic course, a severe course of COVID-19 and a higher risk of progression to diseases have also been described, along with a heightened risk for pregnancy complications. Yet, vertical transmission of the virus is rare and the possibility of placental SARS-CoV-2 infection as a prerequisite for vertical transmission requires further studies.

View Article and Find Full Text PDF

Neonatal passive immunity, derived from transplacental transfer of IgG antibodies from mother to fetus during pregnancy, can mitigate the risk for severe infections in the early postnatal period. Understanding the placenta as the gateway organ in this process, we aimed to evaluate the influence of specific factors modulating the transplacental IgG transfer rate (TPTR) in 141 mother/neonate pairs. We further evaluated the potential health advantage elicited by maternal IgG with regard to respiratory tract infections during infancy and early childhood.

View Article and Find Full Text PDF

Preterm birth (PTB) complicates 5-18% of pregnancies globally and is a leading cause of maternal and fetal morbidity and mortality. Most PTB is spontaneous and idiopathic, with largely undefined causes. To increase understanding of PTB, much research in recent years has focused on using animal models to recapitulate the pathophysiology of PTB.

View Article and Find Full Text PDF

Pregnancy represents an immunological challenge for the maternal immune system. Pregnancy augments innate immune responses, and particularly monocytes contribute to maintaining the balance between pro- and anti-inflammatory immune responses required for the successful sequence of distinct immunological phases throughout pregnancy. Nonetheless, studies that focus on the heterogeneity of monocytes and analyze the alteration of monocyte subsets in a longitudinal approach throughout healthy pregnancies have remained scarce.

View Article and Find Full Text PDF

Over the last years, an increasing number of outbreaks of vaccine-preventable infectious diseases has been reported. Besides elderly and immunocompromised individuals, newborns and small infants are most susceptible to infections, as their immune system is still immature. This vulnerability during infancy can be mitigated by the transplacental transfer of pathogen-specific antibodies and other mediators of immunity from mother to the fetus during pregnancy, followed postnatally by breast milk-derived immunity.

View Article and Find Full Text PDF

Maternal glucocorticoids critically rise during pregnancy reaching up to a 20-fold increase of mid-pregnancy concentrations. Concurrently, another steroid hormone, progesterone, increases. Progesterone, which shows structural similarities to glucocorticoids, can bind the intracellular glucocorticoid receptor, although with lower affinity.

View Article and Find Full Text PDF

Obstetrical complications such as spontaneous abortion/miscarriage, fetal growth restriction, preeclampsia or preterm birth occur in approx. 15% of human pregnancies. Clinical experts often state that a previous uncomplicated pregnancy reduces the risk for complications in subsequent pregnancies.

View Article and Find Full Text PDF

Research endeavors aiming to understand the maternal immune adaptation to pregnancy significantly rely on the use of animal models, such as mice and rats. These models have provided important insights into the pathophysiology of a number of pregnancy disorders in humans. However, the use of animal models in scientific research is a vividly debated and emotive topic.

View Article and Find Full Text PDF

Up to 10% of pregnancies in Western societies are affected by intrauterine growth restriction (IUGR). IUGR reduces short-term neonatal survival and impairs long-term health of the children. To date, the molecular mechanisms involved in the pathogenesis of IUGR are largely unknown, but the failure to mount an adequate endocrine and immune response during pregnancy has been proposed to facilitate the occurrence of IUGR.

View Article and Find Full Text PDF

Problem: Steroid hormones such as progesterone and glucocorticoids rise during pregnancy and are accountable for the adaptation of the maternal immune system to pregnancy. How steroid hormones induce fetal tolerance is not fully understood. We hypothesized that steroid hormones selectively regulate the T-cell response by promoting T-cell death.

View Article and Find Full Text PDF

The intrauterine environment is an important determinant of immunity later in life of the offspring. An altered prenatal immune development can result in a high postnatal risk for infections, chronic immune diseases, and autoimmunity. Many of these immune diseases show a strong sex bias, such as a high incidence of autoimmune diseases and allergies in adult females or a high risk for infections in males.

View Article and Find Full Text PDF

During pregnancy the maternal immune system has to develop tolerance towards the developing fetus. These changes in maternal immunity can result in increased severity of certain infections, but also in amelioration of autoimmune diseases. Pregnancy-related hormones have been suggested to play a central role in the adaptation of the maternal immune system, but their specific effects on innate immune function is not well understood.

View Article and Find Full Text PDF

A recent study introduced the existence of an 'immune clock' in pregnancy; during the course of gestation, peripheral blood cells from pregnant women were analyzed by mass cytometry using a single-cell signaling-based elastic net algorithm. The insights will undoubtedly promote the testing of such a clock - possibly in synergy with other pacemakers - to potentially predict pregnancy complications.

View Article and Find Full Text PDF

The emerging field of immunometabolism has substantially progressed over the last years and provided pivotal insights into distinct metabolic regulators and reprogramming pathways of immune cell populations in various immunological settings. However, insights into immunometabolic reprogramming in the context of reproduction are still enigmatic. During pregnancy, the maternal immune system needs to actively adapt to the presence of the fetal antigens, i.

View Article and Find Full Text PDF

Pregnant women are at high risk for severe influenza disease outcomes, yet insights into the underlying mechanisms are limited. Here, we present models of H1N1 infection in syngenic and allogenic pregnant mice; infection in the latter mirrors the severe course of 2009 pandemic influenza in pregnant women. We found that the anti-viral immune response in the pregnant host was significantly restricted as compared to the non-pregnant host.

View Article and Find Full Text PDF