Publications by authors named "Petra Bukovska"

Differences in functioning among various genotypes of arbuscular mycorrhizal (AM) fungi can determine their fitness under specific environmental conditions, although knowledge of the underlying mechanisms still is very fragmented. Here we compared seven homokaryotic isolates (genotypes) of Rhizophagus irregularis, aiming to characterize the range of intraspecific variability with respect to hyphal exploration of organic nitrogen (N) resources, and N supply to plants. To this end we established two experiments (one in vitro and one in open pots) and used N-chitin as the isotopically labeled organic N source.

View Article and Find Full Text PDF

Introduction: The hyphosphere of arbuscular mycorrhizal (AM) fungi is teeming with microbial life. Yet, the influence of nutrient availability or nutrient forms on the hyphosphere microbiomes is still poorly understood.

Methods: Here, we examined how the microbial community (prokaryotic, fungal, protistan) was affected by the presence of the AM fungus in the rhizosphere and the root-free zone, and how different nitrogen (N) and phosphorus (P) supplements into the root-free compartment influenced the communities.

View Article and Find Full Text PDF

Both plants and their associated arbuscular mycorrhizal (AM) fungi require nitrogen (N) for their metabolism and growth. This can result in both positive and negative effects of AM symbiosis on plant N nutrition. Either way, the demand for and efficiency of uptake of mineral N from the soil by mycorrhizal plants are often higher than those of nonmycorrhizal plants.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi lack efficient exoenzymes to access organic nutrients directly. Nevertheless, the fungi often obtain and further channel to their host plants a significant share of nitrogen (N) and/or phosphorus from such resources, presumably via cooperation with other soil microorganisms. Because it is challenging to disentangle individual microbial players and processes in complex soil, we took a synthetic approach here to study N-labelled chitin (an organic N source) recycling via microbial loop in AM fungal hyphosphere.

View Article and Find Full Text PDF

Symbiosis between plants and arbuscular mycorrhizal (AM) fungi, involving great majority of extant plant species including most crops, is heavily implicated in plant mineral nutrition, abiotic and biotic stress tolerance, soil aggregate stabilization, as well as shaping soil microbiomes. The latter is particularly important for efficient recycling from soil to plants of nutrients such as phosphorus and nitrogen (N) bound in organic forms. Chitin is one of the most widespread polysaccharides on Earth, and contains substantial amounts of N (>6% by weight).

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi establish symbiotic associations with many plant species, transferring significant amounts of soil nutrients such as phosphorus to plants and receiving photosynthetically fixed carbon in return. Functioning of AM symbiosis is thus based on interaction between two living partners. The importance of dead AM fungal biomass (necromass) in ecosystem processes remains unclear.

View Article and Find Full Text PDF

Despite the crucial importance of arbuscular mycorrhizal fungi (AMF) for numerous processes within terrestrial ecosystems, knowledge of the determinants of AMF community structure still is limited, mainly because of the limited scope of the available individual case studies which often only include a few environmental variables. Here, we describe the AMF diversity of mid-European meadows (mown or regularly cut grasslands, or recently abandoned lands where grasslands established spontaneously) within a considerably heterogeneous landscape over a scale of several hundred kilometers with regard to macroclimatic, microclimatic, and soil parameters. We include data describing the habitat (including vegetation type), geography, and climate, and test their contribution to the structure of the AMF communities at a regional scale.

View Article and Find Full Text PDF

Research efforts directed to elucidation of mechanisms behind trading of resources between the partners in the arbuscular mycorrhizal (AM) symbiosis have seen a considerable progress in the recent years. Yet, despite of the recent developments, some key questions still remain unanswered. For example, it is well established that the strictly biotrophic AM fungus releases phosphorus to- and receives carbon molecules from the plant symbiont, but the particular genes, and their products, responsible for facilitating this exchange, are still not fully described, nor are the principles and pathways of their regulation.

View Article and Find Full Text PDF

Biochar has been heralded as a multipurpose soil amendment to sustainably increase soil fertility and crop yields, affect soil hydraulic properties, reduce nutrient losses, and sequester carbon. Some of the most spectacular results of biochar (and organic nutrient) inputs are the soils in the Amazon, dark anthropogenic soils with extremely high fertility sustained over centuries. Such soil improvements have been particularly difficult to achieve on a short run, leading to speculations that biochar may need to age (weather) in soil to show its best.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass.

View Article and Find Full Text PDF

Establishment of nonmycorrhizal controls is a "classic and recurrent theme" in mycorrhizal research. For decades, authors reported mycorrhizal plant growth/nutrition as compared to various nonmycorrhizal controls. In such studies, uncertainties remain about which nonmycorrhizal controls are most appropriate and, in particular, what effects the control inoculations have on substrate and root microbiomes.

View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass.

View Article and Find Full Text PDF

Background: In adults, infliximab (IFX) levels correlate with disease activity, and antibodies to IFX (ATIs) predict treatment failure. We aimed to determine the association of IFX levels and ATIs with disease activity in a paediatric population. We prospectively collected blood, stool, and clinical data from 65 patients (age 10.

View Article and Find Full Text PDF

Highly acidic soils (pH < 3) represent an environment which might potentially offer new biotechnologically interesting fungi. Nevertheless, only little data on fungal communities in highly acidic habitats are available. Here, we focused on the diversity of cultivable filamentous microfungi in highly acidic soils (pH < 3) in the Czech Republic.

View Article and Find Full Text PDF

Large fraction of mineral nutrients in natural soil environments is recycled from complex and heterogeneously distributed organic sources. These sources are explored by both roots and associated mycorrhizal fungi. However, the mechanisms behind the responses of arbuscular mycorrhizal (AM) hyphal networks to soil organic patches of different qualities remain little understood.

View Article and Find Full Text PDF

Mycorrhizal fungi provide direct and functional interconnection of soil environment with their host plant roots. Colonization of non-host plants have occasionally been described, but its intensity and functional significance in complex plant communities remain generally unknown. Here, the abundance of ectomycorrhizal fungus Tuber aestivum was measured in the roots of host and non-host (non-ectomycorrhizal) plants in a naturally occurring T.

View Article and Find Full Text PDF

Mycorrhizal fungi interconnect two different kinds of environments, namely the plant roots with the surrounding soil. This widespread coexistence of plants and fungi has important consequences for plant mineral nutrition, water acquisition, carbon allocation, tolerance to abiotic and biotic stresses and interplant competition. Yet some current research indicates a number of important roles to be played by hyphae-associated microbes, in addition to the hyphae themselves, in foraging for and acquisition of soil resources and in transformation of organic carbon in the soil-plant systems.

View Article and Find Full Text PDF

Several methods of molecular analysis of microbial diversity, including terminal restriction fragment length polymorphism (T-RFLP) analysis are based on measurement of the DNA fragment length. Significant variation between sequence-determined and measured length of restriction fragments (drift) has been observed, which can affect the efficiency of the identification of microorganisms in the analyzed communities. In the past, this variation has been attributed to varying fragment length and purine content.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiona8lgg9tti5gu99saoli053c1b2mphgb9): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once