Imidazolium-based guests containing two distinct binding epitopes are capable of binding β-cyclodextrin and cucurbit[6/7]uril (CB) simultaneously to form heteroternary 1:1:1 inclusion complexes. In the final configuration, the hosts occupy binding sites disfavored in the binary complexes because of the chemically induced reorganization of the intermediate 1:1 aggregate. In addition, the reported guests are capable of binding two CBs to form either 1:2 or 1:1:1 ternary assemblies despite consisting of a single cationic moiety.
View Article and Find Full Text PDFBisimidazolium salts with one central biphenyl binding site and two terminal adamantyl binding sites form water-soluble binary or ternary aggregates with cucurbit[7]uril (CB7) and β-cyclodextrin (β-CD) with rotaxane and pseudorotaxane architectures. The observed arrangements result from cooperation of the supramolecular stopper binding strength and steric barriers against free slippage of the CB7 and β-CD host molecules over the bisimidazolium guest axle.
View Article and Find Full Text PDFAdamantylated bisimidazolium cations exhibit a distinct fragmentation pathway in contrast to their cucurbit[7]uril (CB7) complexes. The observed alternative fragmentation of the guest molecule in a complex clearly correlates to the supposed sterically hindered or allowed slippage of the macrocycle over the axel molecule.
View Article and Find Full Text PDF