Monoterpene and 5-methylcoumarin- or 5-methylchromone-coupled meroterpenoids occurring mainly in the Asteraceae species proved to have high potency against protozoans, worms, and various tumor cells, which make them interesting targets for searching for new bioactive compounds. The African plant was applied in traditional medicine for healing chest pain and stomach aches. Three new meroterpenoids named centrapalus coumarin N (), pauciflorins P (), and Q (), and the already known cyclohoehnelia coumarin (), were isolated from the chloroform extract of , together with centrapalus coumarin O (), which was obtained for the first time from a natural source.
View Article and Find Full Text PDFInvestigation of isostructurality leads to a deeper understanding of close-packing principles and contributes to the ability of crystal engineering. A given packing motif may tolerate small molecular changes within a limit. Slight alterations of a crystal packing arrangement are carried out in order to fine-tune the structural and macroscopic properties, keeping the balance of the spatial requirements and electrostatic effects of the altered molecules in the crystals, preserving their isostructurality.
View Article and Find Full Text PDFIron(II) complexes containing ligands with a R P-P-PR unit were synthesized by metathesis reactions. With R=tBu, a mixture of two isomers is formed; in one of them, the terminal phosphorus binds to the Fe center (ylidic structure), while in the other one, the central P atom is linked to Fe. Starting from differently functionalized parent triphosphanes and corresponding functionalized Fe complexes, the ratio of isomers does not change.
View Article and Find Full Text PDFFive unusual meroterpenoids based on new carbon skeletons, pauciflorins A-E (-), were isolated by multistep chromatographic separations of a methanol extract of the aerial parts of . Compounds - are derived by the connection of a 2-nor-chromone and a monoterpene unit, whereas and are dihydrochromone-monoterpene adducts with a rarely occurring orthoester functionality. The structures were solved using 1D and 2D NMR, HRESIMS, and single-crystal X-ray diffraction.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
April 2021
The coordination properties of four hydroxypyridinecarboxylates, designed for the treatment of iron-overloading conditions as bidentate O,O'-donor ligands, have been studied with Zn in the solid state. The coordination compounds [Zn(A1)(HO)] (1), [Zn(A2)(HO)] (2), [Zn(A3)(HO)]·2HO (3) and [Zn(B1)(HO)]·4HO (4), where the ligands are 1-methyl-4-oxidopyridinium-3-carboxylate (A1, CHNO), 1,6-dimethyl-4-oxidopyridinium-3-carboxylate (A2, CHNO), 1,5-dimethyl-4-oxido-pyridinium-3-carboxylate (A3, CHNO) and 1-methyl-3-oxidopyridinium-4-carboxylate (B1, CHNO), have been synthesized and analysed by single-crystal X-ray diffraction. The ligands were chosen to probe (i) the electronic effects of inverting the positions of the O-atom donor groups (i.
View Article and Find Full Text PDFTwo polymorphs and a solvatomorph of a new dimethylammonium polytungstate-decakis(dimethylammonium) dihydrogendodecatungstate, (MeNH)(WO)·HO ( = 10 or 11)-have been synthesized. Their structures were characterized by single-crystal X-ray diffraction and solid-phase NMR methods. The shape of the dodecatungstate anions is essentially the same in all three structures, their interaction with the cations and water of crystallization, however, is remarkably variable, because the latter forms different hydrogen-bonded networks, and provides a highly versatile matrix.
View Article and Find Full Text PDFCompounds containing redox active permanganate anions and complexed silver cations with reducing pyridine ligands are used not only as selective and mild oxidants in organic chemistry but as precursors for nanocatalyst synthesis in low-temperature solid-phase quasi-intramolecular redox reactions. Here we show a novel compound (4AgpyMnO·AgpyMnO) that has unique structural features including (1) four coordinated and one non-coordinated permanganate anion, (2) κO-permanganate coordinated Ag, (3) chain-like [Ag(py)] units, (4) non-coordinated ionic permanganate ions and an [Ag(py)] tetrahedra as well as (5) unsymmetrical hydrogen bonds between pyridine α-CHs and a permanganate oxygen. As a result of the oxidizing permanganate anion and reducing pyridine ligand, a highly exothermic reaction occurs at 85 °C.
View Article and Find Full Text PDFNine new (1-9) and two known (10, 11) jatrophane diterpenoids were isolated from the methanol extract of Euphorbia dulcis. The structure elucidation of the compounds was performed by means of extensive spectroscopic analysis, including HRESIMS, 1D (H, JMOD), and 2D (HSQC, HMBC, H-H-COSY, NOESY) NMR experiments. The absolute configuration of compound 1 was determined by single-crystal X-ray diffraction.
View Article and Find Full Text PDFA novel functionality was introduced in the pillararene family by the Claisen rearrangement of monoallyl pillar[5]arene. This new key derivative can lead to the formation of a 10 + 1 functionalized derivative, a useful scaffold for further derivatization. Except for the previously known monodeprotection reaction, all steps proceed efficiently with high yields and easy separation.
View Article and Find Full Text PDFThe asymmetric unit of the title salt, C19H25N2OS(+)·C4H3O4 (-) [systematic name: (S)-3-(2-meth-oxy-pheno-thia-zin-10-yl)-N,N,2-tri-methyl-propanaminium hydrogen maleate], comprises two (S)-levomepromazine cations and two hydrogen maleate anions. The conformations of the two cations are similar. The major difference relates to the orientation of the meth-oxy substituent at the pheno-thia-zine ring system.
View Article and Find Full Text PDFA novel, highly modular synthetic method with high functional group tolerance was developed for the construction of chromenoquinoline derivatives from arylpropynyloxy-benzonitriles and diaryliodonium triflates via an oxidative arylation-cyclization path. The copper(I) chloride catalyzed reaction is presumed to involve the formation of highly active arylcopper(III) species.
View Article and Find Full Text PDFIn the last few decades, supramolecular chemistry has been at the forefront of chemical research, with the aim of understanding chemistry beyond the covalent bond. Since the long-range periodicity in crystals is a product of the directionally specific short-range intermolecular interactions that are responsible for molecular assembly, analysis of crystalline solids provides a primary means to investigate intermolecular interactions and recognition phenomena. This article discusses some areas of contemporary research involving supramolecular interactions in the solid state.
View Article and Find Full Text PDFA copper-catalyzed carboarylation-ring-closure strategy was used for the modular synthesis of oxazolines via the reaction of 1-aryl- and 1-alkylpropargylamides and diaryliodonium salts. The novel approach enables the efficient, modular synthesis of oxazoline derivatives bearing fully substituted exo double bonds.
View Article and Find Full Text PDFReaction of aryl- and benzylsulfanopyridinium amidates bearing a methyl group in position 6 with 2 equiv of diphenylketene afforded a spiro-fused ring system: azoniabenzo[de]fluorine. By use of an excess amount of ketene, a distinct reaction was observed via which a 1H-pyrrolo[3,2-b]pyridin-2(3H)-one derivative was furnished. The structure of the tetracyclic spiro-fused ring system was unambiguously confirmed by X-ray diffraction, and its formation was rationalized by DFT calculations.
View Article and Find Full Text PDFN-dienylphenothiazines synthesized from tetrazolo[1,5-a]pyridinium salts by treatment with phenothiazine were subjected to catalytic hydrogenation to yield N-butylphenothiazines, whereas transformation of these dienes with borane dimethyl sulfide (BH(3) × Me(2)S) resulted in selective hydroboration of one double bond and full reduction of the other double bond to give 2-hydroxybutylphenothiazines. Position of the hydroxyl group was supported by NMR spectroscopy and verified by X-ray analysis. Comparison of MDR modulatory activity of the new derivatives revealed that the hydroxybutyl compounds are promising candidates for development of novel MDR inhibitors.
View Article and Find Full Text PDFThe resolution of racemic ibuprofen was studied by partial diastereomer salt formation. The resolution was performed via two methods: resolution with (+)-(R)-phenylethylamine as chiral agent and resolution with a mixture of (+)-(R)-phenylethylamine and benzylamine. The diastereomers and unreacted enantiomers were separated by supercritical fluid extraction with carbon dioxide at 15 MPa and 33 degrees C.
View Article and Find Full Text PDFOptical resolution methods were established for racemic 1-(1-naphthyl) ethylamine. The resolving agents were synthesized by N-derivatizing (R)-1-(1-naphthyl) ethylamine with dicarboxylic acids. Oxalic, malonic, and succinic acid derivatives were found to be suitable resolving agents.
View Article and Find Full Text PDFSix active 4-aryl-5-nitro-pentan-2-ones were synthesized enantioselectively from the corresponding 5-aryl-butenones by asymmetric Michael addition of nitromethane using an imidazolidine-type enantioselective organocatalyst. The ee ratio of the products were between 67 and 100%, determined by HPLC with Chiracel OD. Molecular and crystal structure of 3,4-methylenedioxy-phenyl-5-nitro-pentan-2-one has been studied by single crystal X-ray diffraction.
View Article and Find Full Text PDFThe modified Mg : Al (3 : 1) hydrotalcite has been found to be an efficient catalyst in the conversion of carbamates into oxazolidin-2-ones under mild reaction conditions. A wide variety of oxazolidin-2-ones were obtained with excellent chemical yield.
View Article and Find Full Text PDFFacile chemical synthesis of the natural chiral-pool-derived host 1 and its subsequent crystallization ("supramolecular synthesis") from different solvents yielded crystalline assemblies. Crystal structure determinations of five of the so formed solvent-inclusion compounds (1 a-1 e) reveal hexagonal symmetries in four cases. The structural characteristics of these chiral host-guest ensembles with varying stoichiometries can be best described as assemblies formed through intra-pair hydrogen bridges of host molecules into Piedfort pairs of differing complexity.
View Article and Find Full Text PDF