We reconstructed the historical pattern of postglacial biogeographic range expansion of the boreal tree species Alnus incana in Europe. To assess population genetic structure and diversity, we performed a combined analysis of nuclear microsatellite loci and chloroplast DNA sequences (65 populations, 1004 individuals). Analysis of haplotype and microsatellite diversity revealed that southeastern refugial populations situated in the Carpathians and the Balkan Peninsula did not spread north and cannot be considered as important source populations for postglacial recolonization of Europe; populations in Eastern Europe did not establish Fennoscandian populations; populations in Fennoscandia and Eastern Europe have no unique genetic cluster, but represent a mix with a predominant cluster typical for Central Europe; and that colonization of Fennoscandia and Eastern Europe took place from Central Europe.
View Article and Find Full Text PDFBackground/aims: Recently, new palaeoecological records supported by molecular analyses and palaeodistributional modelling have provided more comprehensive insights into plant behaviour during the last Quaternary cycle. We reviewed the migration history of species of subgenus Alnus during the last 50,000 years in Europe with a focus on (1) a general revision of Alnus history since the Last Glacial Maximum (LGM), (2) evidence of northern refugia of Alnus populations during the LGM and (3) the specific history of Alnus in particular European regions.
Methodology: We determined changes in Alnus distribution on the basis of 811 and 68 radiocarbon-dated pollen and macrofossil sites, respectively.
We attempted to confirm that seed banks can be viewed as an important genetic reservoir by testing the hypothesis that standing (aboveground) plants represent a nonrandom sample of the seed bank. We sampled multilocus allozyme genotypes from three species with different life history strategies: Amaranthus retroflexus, Carduus acanthoides, Pastinaca sativa. In four populations of each species we analysed the extent to which allele and genotype frequencies vary in consecutive life history stages including the summer seed bank, which has been overlooked up to now.
View Article and Find Full Text PDF