Publications by authors named "Petr Slobodian"

The coating of polymer substrate with polypyrrole, described herein with detailed know-how, represents a novel technique of surface functionalization. The choice of oxidizing agent and the polymerization time both affect the properties of the thin polypyrrole layer. The specific conductivity, free surface energy, thickness, topography, and FTIR spectra of polypyrrole layer were determined.

View Article and Find Full Text PDF

This study reports the possibility of using biaxially oriented polyethylene terephthalate (BOPET) plastic packaging to convert mechanical energy into electrical energy. Electricity is generated due to the piezoelectricity of BOPET. Electricity generation depends on the mechanical deformation of the processing aids (inorganic crystals), which were found and identified by SEM and EDAX analyses as SiO.

View Article and Find Full Text PDF

A styrene-butadiene-styrene co-polymer matrix nanocomposite filled with graphene nanoplatelets was studied to prepare chemiresistive volatile organic compounds (VOCs) room temperature sensors with considerable response and selectivity. Nanofiller concentration was estimated from the electrical conductivity percolation behaviour of the nanocomposite. Fabricated sensors provided selective relative responses to representative VOCs differing by orders of magnitude.

View Article and Find Full Text PDF

A wearable and stretchable strain sensor with a gauge factor above 23 was prepared using a simple and effective technique. Conducting nanocomposite strands were prepared from styrene-b-(ethylene-co-butylene)-b-styrene triblock copolymer (SEBS) and carbon black (CB) through a solvent-processing method that uses a syringe pump. This novel nanocomposite preparation technique is a straightforward and cost-effective process and is reported in the literature for the first time.

View Article and Find Full Text PDF

We prepared electroactive PVDF membranes, which were subjected to mechanical as well as dual electro-mechanical signals and their responses were detected by the evoked electrical pulses. The aim was to obtain primarily electric energy that could be used for light signalling, sensing of the membrane properties and membrane motion detection. The obtained data showed the unique as well as usable properties of PVDF membranes.

View Article and Find Full Text PDF

This study focuses on the use of thermodynamic sensors (TDS) in baking, brewing, and yogurt production at home. Using thermodynamic sensors, a change in the temperature flow between the two sensor elements during fermentation was observed for the final mixture (complete recipe for pizza dough production), showing the possibility of distinguishing some phases of the fermentation process. Even during the fermentation process in the preparation of wort and yogurt with non-traditional additives, the sensors were able to indicate significant parts of the process, including the end of the process.

View Article and Find Full Text PDF

We assessed an effect of an embedded electro-conductive multiwalled carbon nanotube nanopaper in an epoxy matrix on the release of the frozen actuation force and the actuation torque in the carbon nanotube nanopaper/epoxy composite after heating above its glass transition temperature. The presence of the nanopaper augmented the recovery of the actuation stress by the factor of two in comparison with the pure epoxy strips. We proposed a procedure that allowed us to assess this composite strengthening mechanism.

View Article and Find Full Text PDF

A novel microstrip resonant vapor sensor made from a conductive multiwalled carbon nanotubes/ethylene-octene copolymer composite, of which its sensing properties were distinctively altered by vapor polarity, was developed for the detection of organic vapors. The alteration resulted from the modified composite electronic impedance due to the penetration of the vapors into the copolymer matrix, which subsequently swelled, increased the distances between the carbon nanotubes, and disrupted the conducting paths. This in turn modified the reflection coefficient frequency spectra.

View Article and Find Full Text PDF

The design of a unipole and a dual band F-shaped antenna was conducted to find the best parameters of prepared antenna. Antenna radiator part is fully made of polymer and nonmetal base composite. Thermoplastic polyurethane (PU) was chosen as a matrix and multi-wall carbon nanotubes (MWCNT) as an electrical conductive filler, which creates conductive network.

View Article and Find Full Text PDF

Hybrid thermoelectric composites consisting of organic ethylene-octene-copolymer matrices (EOC) and embedded inorganic pristine and functionalized multiwalled carbon nanotubes, carbon nanofibers or organic polyaniline and polypyrrole particles were used to form conductive nanostructures with thermoelectric properties, which at the same time had sufficient strength, elasticity, and stability. Oxygen doping of carbon nanotubes increased the concentration of carboxyl and C-O functional groups on the nanotube surfaces and enhanced the thermoelectric power of the respective composites by up to 150%. A thermocouple assembled from EOC composites generated electric current by heat supplied with a mere short touch of the finger.

View Article and Find Full Text PDF

The versatile properties of a nanopaper consisting of a porous network of multi-walled carbon nanotubes were applied to enhance the mechanical and electrical properties of a thermosetting epoxy polymer. The embedded nanopaper proved useful both in the monitoring of the curing process of the epoxy resin by the self-regulating Joule heating and in the supervising of tensile deformations of the composite by detecting changes in its electrical resistance. When heated by Joule heating above its glass transition temperature, the embedded carbon nanotube nanopaper accelerated not only the modelling of the composites into various shapes, but also the shape recovery process, wherein the stress in the nanopaper was released and the shape of the composite reverted to its original configuration.

View Article and Find Full Text PDF

Wearable electronic sensor was prepared on a light and flexible substrate. The breathing sensor has a broad assumption and great potential for portable devices in wearable technology. In the present work, the application of a flexible thermoplastic polyurethane/multiwalled carbon nanotubes (TPU/MWCNTs) strain sensor was demonstrated.

View Article and Find Full Text PDF

Gas and vapor transport properties were studied in mixed matrix membranes containing elastomeric ethylene-octene copolymer (EOC or poly(ethylene-co-octene)) with three types of carbon fillers: virgin or oxidized multi-walled carbon nanotubes (CNTs) and carbon fibers (CFs). Helium, hydrogen, nitrogen, oxygen, methane, and carbon dioxide were used for gas permeation rate measurements. Vapor transport properties were studied for the aliphatic hydrocarbon (hexane), aromatic compound (toluene), alcohol (ethanol), as well as water for the representative samples.

View Article and Find Full Text PDF