Publications by authors named "Petr Praus"

Unlabelled: In this contribution, an empirical relationship between the number of review and research articles published per year was searched. The simple idea based on proportionality (linearity) between the numbers of both kinds of articles was expressed in terms of a quadratic relationship, in which the quadratic member can reflect negative or positive deviations from the assumed linearity. The quadratic relationship was able to describe beginning periods of research fields as well as their mature phases and to detect the unpredictably high number of review articles.

View Article and Find Full Text PDF

Graphitic carbon nitride (CN) was synthesised from melamine at 550 °C for 4 h in the argon atmosphere and then was reheated for 1-3 h at 500 °C in argon. Two band gaps of 2.04 eV and 2.

View Article and Find Full Text PDF

Graphitic carbon nitride (CN) synthetized by the thermal polycondensation of melamine at 550 °C for 4 h was further exfoliated by heating at 500 °C for 3 h. Silver cations were adsorbed on the exfoliated graphitic carbon nitride (CNE) and then reduced by sodium borohydride forming silver nanoclusters (NCs) with a size of less than 1 nm. The NCs were located on the CNE surface and did not change the CNE properties except for its pore size distribution and thereby specific surface area (SSA).

View Article and Find Full Text PDF

Graphitic carbon nitride (CN) was synthesized from guanidine hydrochloride (G), melamine (M) and dicyandiamide (DCDA). The CN materials synthetized from the pure precursors and their mixtures were characterized by common methods, including thermal analysis, and their photocatalytic activities were tested by the degradation of selected organic pollutants, such as amoxicillin, phenol, Rhodamine B (RhB). Remarkable changes in their texture properties in terms of particle sizes, specific surface areas (SSA) and consequently their photocatalytic activity were explained by the role of guanidine hydrochloride in their synthesis.

View Article and Find Full Text PDF

The performance of the CdTe radiation detectors heavily relies on the method of contact preparation. A convenient research method addressing this problem is the laser-induced transient current technique. In this paper, we compare the performance of two CdTe crystals which underwent different metallization processes.

View Article and Find Full Text PDF

Graphitic carbon nitride (g-CN, hereafter abbreviated as CN) was prepared by the heating of melamine (CN-M) and melamine-cyanurate complex (CN-MCA), respectively, in air at 550 °C for 4 h. The specific surface area (SSA) of CN-M and CN-MCA was 12 m g and 225 mg and the content of oxygen was 0.62 wt.

View Article and Find Full Text PDF

Two-dimensional polymeric graphitic carbon nitride (g-C3N4) is a low-cost material with versatile properties that can be enhanced by the introduction of dopant atoms and by changing the degree of polymerization/stoichiometry, which offers significant benefits for numerous applications. Herein, we investigate the stability of g-C3N4 under electron beam irradiation inside a transmission electron microscope operating at different electron acceleration voltages. Our findings indicate that the degradation of g-C3N4 occurs with N species preferentially removed over C species.

View Article and Find Full Text PDF

Halide perovskites have undergone remarkable developments as highly efficient optoelectronic materials for a variety of applications. Several studies indicated the critical role of defects on the performance of perovskite devices. However, the parameters of defects and their interplay with free charge carriers remain unclear.

View Article and Find Full Text PDF

Graphitic carbon nitride (GCN) was synthetized by heating melamine and then it was thermally exfoliated for 1-3 h in air. Both bulk and exfoliated GCN nanomaterials were treated in the 10-30% aqueous solutions of HO for us to study their modification. The light absorption properties were observed by the reddish color and the red-shifts of their UV-Vis spectra.

View Article and Find Full Text PDF

Graphitic carbon nitride (g-CN) is a conjugated polymer, which recently drew a lot of attention as a metal-free and UV and visible light responsive photocatalyst in the field of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability and earth-abundant nature. In the present work, bulk g-CN was synthesized by thermal decomposition of melamine.

View Article and Find Full Text PDF

Surface-enhanced fluorescence (SEF) requires the absorption/emission band of the fluorophore, the localized surface plasmon resonance (LSPR) of the nanostructure and the excitation wavelength to fall in the same (or very close) spectral range. In this paper, we monitor the SEF intensity and lifetime dependence of riboflavin (vitamin B2) adsorbed on a spacer-modified Ag substrate with respect to the thickness of the spacer. The substrates were formed by silver nanoislands deposited onto magnetron-sputtered polytetrafluoroethylene (ms-PTFE).

View Article and Find Full Text PDF

Bulk graphitic carbon nitride (CN) was synthetized by heating of melamine at 550 °C, and the exfoliated CN (ExCN) was prepared by heating of CN at 500 °C. Sulfur-doped CN was synthesized by heating of thiourea (S-CN) and by a novel procedure based on the post-synthetic derivatization of CN with methanesulfonyl (CHSO) chloride (Mes-CN and Mes-ExCN). The obtained nanomaterials were investigated by common characterization methods and their photocatalytic activity was tested by means of the decomposition of acetic orange 7 (AO7) under ultraviolet A (UVA) irradiation.

View Article and Find Full Text PDF

Performance of the (CdZn)Te pixelated detectors heavily relies on the quality of the underlying material. Modern laser-induced transient current technique addresses this problem as a convenient tool for characterizing the associated charge distribution. In this paper, we investigated the charge sharing phenomenon in (CdZn)Te pixel detector as a function of the charge collected on adjacent pixels.

View Article and Find Full Text PDF

Exfoliated graphitic carbon nitride (g-CN) and two commercially available nanomaterials from titanium dioxide (P25 and CG300) were tested for the photocatalytic degradation of paracetamol (PAR), ibuprofen (IBU), and diclofenac (DIC). Prior to photocatalytic experiments, the nanomaterials were characterized by common methods, such as X-ray diffraction (XRD), UV-VIS diffuse reflectance spectroscopy (DRS), Fourier transformed infrared spectroscopy in attenuated total reflection mode (FTIR-ATR), transmission electron microscopy (TEM), physisorption of nitrogen, and dynamic vapor adsorption (DVS) of water. The sizes and specific surface area (SSA) of the TiO nanoparticles were 6 nm and 300 m·g for CG300 and 21 nm and 50 m·g for P25.

View Article and Find Full Text PDF

Although the nitrous oxide belongs among three of the most contributing greenhouse gases to global warming, it is quite neglected by photocatalytic society. The g-CN and WO composites were therefore tested for the photocatalytic decomposition of NO for the first time. The pure photocatalysts were prepared by simple calcination of precursors, and the composites were prepared by mixing of suspension of pure components in water followed by calcination.

View Article and Find Full Text PDF

TiO/g-CN photocatalysts with the ratio of TiO to g-CN ranging from 0.3/1 to 2/1 were prepared by simple mechanical mixing of pure g-CN and commercial TiO Evonik P25. All the nanocomposites were characterized by X-ray powder diffraction, UV-vis diffuse reflectance spectroscopy, photoluminescence, X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, transmission electron microscopy, photoelectrochemical measurements, and nitrogen physisorption.

View Article and Find Full Text PDF

Time-resolved microspectrofluorimetry and fluorescence microscopy imaging-two complementary fluorescence techniques-provide important information about the intracellular distribution, level of uptake and binding/interactions inside living cell of the labeled molecule of interest. They were employed to monitor the "fate" of AS1411 aptamer labeled by ATTO 425 in human living cells. Confocal microspectrofluorimeter adapted for time-resolved intracellular fluorescence measurements by using a phase-modulation principle with homodyne data acquisition was employed to obtain emission spectra and to determine fluorescence lifetimes in U-87 MG tumor brain cells and Hs68 non-tumor foreskin cells.

View Article and Find Full Text PDF

Reconstruction of signaling pathways is crucial for understanding cellular mechanisms. A pathway is represented as a path of a signaling cascade involving a series of proteins to perform a particular function. Since a protein pair involved in signaling and response have a strong interaction, putative pathways can be detected from protein-protein interaction (PPI) networks.

View Article and Find Full Text PDF

ZnS nanoparticles were precipitated in micellar dispersions of cetyltrimethylammonium bromide (CTAB). ZnS nanoparticles and cetyltrimethylammonium (CTA+) ions formed positively charged ZnS-CTA micelles with the mode zeta potential of 35 mV. The ZnS-CTA micelles were simulated by molecular modelling that confirmed the formation of positive CTA+ bilayers on the ZnS surface.

View Article and Find Full Text PDF

ZnS nanoparticles were precipitated in aqueous dispersions of cationic surfactant cetyltrimethylammonium bromide (CTAB). The sphere radii of ZnS nanoparticles calculated by using band-gap energies steeply decreased from 4.5 nm to 2.

View Article and Find Full Text PDF

One-end-sealed single-crystal sapphire tubes are presented as a simple, robust, and economical alternative for bulky lightpipe probes. Thermal radiation from a blackbody cavity created at the inner surface of the sealed end is gathered by a simple lens-based collecting system and transmitted via optical fiber to the remote detection unit. Simplicity and applicability of the concept are demonstrated by the combination of commercially available sapphire tubes with a common optical pyrometer.

View Article and Find Full Text PDF

CdS nanoparticles were precipitated by the reaction of cadmium acetate with sodium sulphide in the presence of cetyltrimethylammonium (CTA) and deposited on montmorillonite (MMT). The resulting CdS-MMT nanocomposite contained 6 wt.% of CdS and 30 wt.

View Article and Find Full Text PDF

ZnS nanoparticles were prepared and deposited on montmorillonite (MMT) in the presence of cetyltrimethylammonium (CTA). UV spectrometry and transmission electron microscopy (TEM) proved the formation of nanoparticles with diameters ranging from 3 nm to 5 nm. Selected-area electron diffraction (SAED) patterns revealed the presence of romboedric ZnS.

View Article and Find Full Text PDF

Capillary isotachophoresis (ITP), equipped with the conductivity detection, was tested for the separation of cetyltrimethylamonium (CTMA) bromide. To prevent adsorption of CTMA to the capillary walls, several neutral polymers and ethanol were added into the leading electrolytes. Unlike polymer additives, the CTMA free monomers and micelles, created as a result of the isotachophoretic concentration effect, were recognised in the presence of ethanol from 10 to 25% (v/v).

View Article and Find Full Text PDF

An isotachophoresis (ITP)-capillary zone electrophoresis (CZE) combination was used for the determination of chlorite in drinking waters. No sample preparation is needed and no interfering by other anions in tap water was observed. The reached limits of detection with conductivity detector were 0.

View Article and Find Full Text PDF