Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field.
View Article and Find Full Text PDFWe report on efficient and stable, type-I phase-matched second harmonic conversion of a nanosecond high-energy, diode-pumped, Yb:YAG laser. With a frequency-doubling crystal in an enclosed, temperature controller with optical windows, 0.5% energy stability was achieved for approximately half an hour.
View Article and Find Full Text PDFWe report the first-ever, to the best of our knowledge, demonstration of the optical isolation of a kilowatt average power pulsed laser. A Faraday isolator capable of stable protection of the laser amplifier chain delivering 100 J nanosecond laser pulses at the repetition rate of 10 Hz has been developed and successfully tested. The isolator provided an isolation ratio of 30.
View Article and Find Full Text PDFWe report on obtaining output energy of 146 J in 10 ns long pulses at 10 Hz repetition rate from Bivoj, a multi-Joule multi-slab cryogenic gas-cooled diode pumped solid state laser, by overcoming its damage threshold bottleneck. This is a 40% energy and power increase of the laser system in comparison to our previous publication and to the most powerful multi-Joule high power laser system.
View Article and Find Full Text PDFElastic scattering of antiprotons off ^{4}He, ^{12}C, and ^{16,18}O is described for the first time with a consistent microscopic approach based on the calculation of an optical potential (OP) describing the antiproton-target interaction. The OP is derived using the recent antiproton-nucleon (p[over ¯]N) chiral interaction to calculate the p[over ¯]N t matrix, while the target densities are computed with the ab initio no-core shell model using chiral interactions as well. Our results are in good agreement with the existing experimental data and the results computed at different chiral orders of the p[over ¯]N interaction display a well-defined convergence pattern.
View Article and Find Full Text PDFThe fusion of deuterium (D) with tritium (T) is the most promising of the reactions that could power thermonuclear reactors of the future. It may lead to even more efficient energy generation if obtained in a polarized state, that is with the spin of the reactants aligned. Here, we report first-principles predictions of the polarized DT fusion using nuclear forces from effective field theory.
View Article and Find Full Text PDFWe study cryogenic laser operation of an Yb-doped KLu(WO) crystal pumped with a volume Bragg grating (VBG) stabilized diode laser at 981 nm. In the continuous wave laser regime, a maximum output power of 4.31 W is achieved at 80 K with a slope efficiency of 44.
View Article and Find Full Text PDFMulti-watt continuous-wave (CW) operation of tetragonal rare-earth calcium aluminate Yb:CaLnAlO(Ln=Gd,Y)) crystals in plano-plano microchip lasers was demonstrated with an almost quantum-defect-limited slope efficiency. Pumped at 978 nm by an InGaAs laser diode, a 3.4 mm long 8 at.
View Article and Find Full Text PDFThe weakly bound exotic ^{11}Be nucleus, famous for its ground-state parity inversion and distinct n+^{10}Be halo structure, is investigated from first principles using chiral two- and three-nucleon forces. An explicit treatment of continuum effects is found to be indispensable. We study the sensitivity of the ^{11}Be spectrum to the details of the three-nucleon force and demonstrate that only certain chiral interactions are capable of reproducing the parity inversion.
View Article and Find Full Text PDFThe Borromean ^{6}He nucleus is an exotic system characterized by two halo neutrons orbiting around a compact ^{4}He (or α) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for ab initio theoretical calculations based on traditional bound-state methods. Using soft nucleon-nucleon interactions based on chiral effective field theory potentials, we show that supplementing the model space with ^{4}He+n+n cluster degrees of freedom largely solves this issue.
View Article and Find Full Text PDFWe provide a unified ab initio description of the ^{6}Li ground state and elastic scattering of deuterium (d) on ^{4}He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of ^{6}Li. The calculation reproduces the empirical binding energy of ^{6}Li, yielding an asymptotic D- to S-state ratio of the ^{6}Li wave function in the d+α configuration of -0.
View Article and Find Full Text PDFWe present the first ab initio calculations for p-shell single-Λ hypernuclei. For the solution of the many-baryon problem, we develop two variants of the no-core shell model with explicit Λ and Σ(+),Σ(0),Σ(-) hyperons including Λ-Σ conversion, optionally supplemented by a similarity renormalization group transformation to accelerate model-space convergence. In addition to state-of-the-art chiral two- and three-nucleon interactions, we use leading-order chiral hyperon-nucleon interactions and a recent meson-exchange hyperon-nucleon interaction.
View Article and Find Full Text PDFThe low-lying continuum spectrum of the (6)He nucleus is investigated for the first time within an ab initio framework that encompasses the (4)He + n + n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh.
View Article and Find Full Text PDFThe analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars.
View Article and Find Full Text PDFThe neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2- resonance is well established, there is a controversy concerning the excited 1/2- resonance reported in some experiments as low lying and narrow (E(R)∼1 MeV, Γ≤1 MeV) while in others as very broad and located at a higher energy. This issue cannot be addressed by ab initio theoretical calculations based on traditional bound-state methods.
View Article and Find Full Text PDFWe study the use of truncated normal-ordered three-nucleon interactions in nuclear structure calculations starting from chiral two- plus three-nucleon Hamiltonians evolved consistently with the similarity renormalization group. We present three key developments: (i) a rigorous benchmark of the normal-ordering approximation in the importance-truncated no-core shell model for (4)He, (16)O, and (40)Ca; (ii) a direct comparison of the importance-truncated no-core shell model results with coupled-cluster calculations at the singles and doubles level for (16)O; and (iii) first applications of similarity renormalization group-evolved chiral NN+3N Hamiltonians in coupled-cluster calculations for medium-mass nuclei (16,24)O and (40,48)Ca. We show that the normal-ordered two-body approximation works very well beyond the lightest isotopes and opens a path for studies of medium-mass and heavy nuclei with chiral two- plus three-nucleon interactions.
View Article and Find Full Text PDFWe apply the ab initio no-core shell model combined with the resonating-group method approach to calculate the cross sections of the (3)H(d,n)(4)He and (3)He(d,p)(4)He fusion reactions. These are important reactions for the big bang nucleosynthesis and the future of energy generation on Earth. Starting from a selected similarity-transformed chiral nucleon-nucleon interaction that accurately describes two-nucleon data, we performed many-body calculations that predict the S factor of both reactions.
View Article and Find Full Text PDFWe present first ab initio no-core shell model (NCSM) calculations using similarity renormalization group (SRG) transformed chiral two-nucleon (NN) plus three-nucleon (3N) interactions for nuclei throughout the p-shell, particularly (12)C and (16)O. By introducing an adaptive importance truncation for the NCSM model space and an efficient JT-coupling scheme for the 3N matrix elements, we are able to surpass previous NCSM studies including 3N interactions. We present ground and excited states in (12)C and (16)O for model spaces up to N(max) = 12 including full 3N interactions.
View Article and Find Full Text PDFThe chiral low-energy constants c(D) and c(E) are constrained by means of accurate ab initio calculations of the A = 3 binding energies and, for the first time, of the triton beta decay. We demonstrate that these low-energy observables allow a robust determination of the two undetermined constants, a result of the surprising fact that the determination of c(D) depends weakly on the short-range correlations in the wave functions. These two- plus three-nucleon interactions, originating in chiral effective field theory and constrained by properties of the A = 2 system and the present determination of c(D) and c(E), are successful in predicting properties of the A = 3 and 4 systems.
View Article and Find Full Text PDFPhys Rev Lett
August 2008
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We present phase shifts for neutron scattering on 3H, 4He, and 10Be and proton scattering on 3,4He, using realistic nucleon-nucleon potentials.
View Article and Find Full Text PDFWe present a qualitative improvement of the ab initio no-core shell model (NCSM) approach by implementing three-body interaction capability for p-shell nuclei. We report the first calculations using three-body effective interactions derived from realistic nucleon-nucleon potentials for 6Li, 8Be, and 10B and demonstrate that the use of three-body effective interactions speeds up the convergence of the NCSM approach. For 10B, we predict JpiT = 1(+)0 ground state, contrary to the experimental observation of 3(+)0, when the AV8(') potential is used, indicating the need for true three-body forces.
View Article and Find Full Text PDF