Publications by authors named "Petr Kohout"

Introduction: Revegetation of barren substrates is often determined by the composition and distance of the nearest plant community, serving as a source of colonizing propagules. Whether such dispersal effect can be observed during the development of soil microbial communities, is not clear. In this study, we aimed to elucidate which factors structure plant and soil bacterial and fungal communities during primary succession on a limestone quarry spoil heap, focusing on the effect of distance to the adjoining xerophilous grassland.

View Article and Find Full Text PDF

Forests play a crucial role in global carbon cycling by absorbing and storing significant amounts of atmospheric carbon dioxide. Although boreal forests contribute to approximately 45% of the total forest carbon sink, tree growth and soil carbon sequestration are constrained by nutrient availability. Here, we examine if long-term nutrient input enhances tree productivity and whether this leads to carbon storage or whether stimulated microbial decomposition of organic matter limits soil carbon accumulation.

View Article and Find Full Text PDF

All plant populations fluctuate in time. Apart from the dynamics imposed by external forces such as climate, these fluctuations can be driven by endogenous processes taking place within the community. In this study, we aimed to identify potential role of soil-borne microbial communities in driving endogenous fluctuations of plant populations.

View Article and Find Full Text PDF

Although the effects of plants on soil properties are well known, the effects of distance from plant roots to root-free soil on soil properties and associated soil organisms are much less studied. Previous research on the effects of distance from a plant explored specific soil organisms and properties, however, comparative studies across a wide range of plant-associated organisms and multiple model systems are lacking. We conducted a controlled greenhouse experiment using soil from two contrasting habitats.

View Article and Find Full Text PDF

Background: Grasslands provide fundamental ecosystem services that are supported by their plant diversity. However, the importance of plant taxonomic diversity for the diversity of other taxa in grasslands remains poorly understood. Here, we studied the associations between plant communities, soil chemistry and soil microbiome in a wooded meadow of Čertoryje (White Carpathians, Czech Republic), a European hotspot of plant species diversity.

View Article and Find Full Text PDF

An increasing number of studies of above-belowground interactions provide a fundamental basis for our understanding of the coexistence between plant and soil communities. However, we lack empirical evidence to understand the directionality of drivers of plant and soil communities under natural conditions: 'Are soil microorganisms driving plant community functioning or do they adapt to the plant community?' In a field experiment in an early successional dune ecosystem, we manipulated soil communities by adding living (i.e.

View Article and Find Full Text PDF

Inoculation of common bean seed with diversified bacterial synthetic communities can induce deep modifications of both seed and seedling microbiota, even in living potting soil.

View Article and Find Full Text PDF

Background: Below-ground microbes mediate key ecosystem processes and play a vital role in plant nutrition and health. Understanding the composition of the belowground microbiome is therefore important for maintaining ecosystem stability. The structure of the belowground microbiome is largely determined by individual plants, but it is not clear how far their influence extends and, conversely, what the influence of other plants growing nearby is.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes soil fungal diversity globally by examining over 4,000 topsoil samples from various ecosystems, revealing how different environmental factors influence fungal communities.
  • It demonstrates the effects of temperature and precipitation on local species richness (alpha diversity) and how these factors contribute to variations in fungal composition and evolutionary relationships (beta and phylogenetic diversity).
  • The research integrates fungal diversity into global biodiversity frameworks, providing maps and insights that can aid in conservation efforts and ecological studies worldwide.
View Article and Find Full Text PDF

Arbuscular mycorrhizal (AM) fungi are crucial mutualistic symbionts of the majority of plant species, with essential roles in plant nutrient uptake and stress mitigation. The importance of AM fungi in ecosystems contrasts with our limited understanding of the patterns of AM fungal biogeography and the environmental factors that drive those patterns. This article presents a release of a newly developed global AM fungal dataset (GlobalAMFungi database, https://globalamfungi.

View Article and Find Full Text PDF
Article Synopsis
  • Metagenomics allows scientists to analyze environmental DNA for insights into microbiomes, but eukaryotic organisms like fungi are often underrepresented due to challenges with intron-rich genes.
  • Researchers developed a machine learning algorithm, SVMmycointron, to accurately predict fungal introns, improving gene annotations in metagenomic datasets by up to 9.1%.
  • This tool enhances understanding of the role of fungi and other eukaryotes in microbiome function and is accessible for researchers working with metagenomics data.
View Article and Find Full Text PDF
Article Synopsis
  • Understanding the impact of symbiotic relationships on the ecology and evolution of fungal spores has been overlooked in research, even though these interactions are common in various ecosystems.
  • A comprehensive database of spore morphology, encompassing over 26,000 species, revealed significant variations in spore size linked to changes in symbiotic relationships.
  • This study shows that symbiotic status plays a more crucial role than climate in determining spore size distribution among plant-associated fungi, affecting their dispersal abilities compared to free-living fungi.
View Article and Find Full Text PDF
Article Synopsis
  • Alpine tundra ecosystems are changing because of warming temperatures, which are causing trees to move into areas where they didn't grow before and plants to change.
  • Researchers studied how climate, soil, plants, and fungi interact in the tundra across different mountain ranges in Europe.
  • As temperatures rise, certain plants are replacing others, leading to changes in fungi types, which could reduce the amount of fungi in the soil and decrease carbon storage in the environment.
View Article and Find Full Text PDF

Forests influence climate and mitigate global change through the storage of carbon in soils. In turn, these complex ecosystems face important challenges, including increases in carbon dioxide, warming, drought and fire, pest outbreaks and nitrogen deposition. The response of forests to these changes is largely mediated by microorganisms, especially fungi and bacteria.

View Article and Find Full Text PDF

Clearcutting represents a standard management practice in temperate forests with dramatic consequences for the forest ecosystem. The removal of trees responsible for the bulk of primary production can result in a complex response of the soil microbiome. While studies have shown that tree root-symbiotic ectomycorrhizal fungi disappear from soil and decomposing fine roots of trees become a hotspot for fungal decomposition, the fate of the bacterial component of the soil microbiome following clearcutting is unclear.

View Article and Find Full Text PDF

Microbial life represents the majority of Earth's biodiversity. Across disparate disciplines from medicine to forestry, scientists continue to discover how the microbiome drives essential, macro-scale processes in plants, animals and entire ecosystems. Yet, there is an emerging realization that Earth's microbial biodiversity is under threat.

View Article and Find Full Text PDF

Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach.

View Article and Find Full Text PDF

Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are the most abundant and widespread types of mycorrhizal symbiosis, but there is little and sometimes conflicting information regarding the interaction between AM fungi (AMF) and EcM fungi (EcMF) in soils. Their competition for resources can be particularly relevant in successional ecosystems, which usually present a transition from AM-forming herbaceous vegetation to EcM-forming woody species. The aims of this study were to describe the interaction between mycorrhizal fungal communities associated with AM and EcM hosts naturally coexisting during primary succession on spoil banks and to evaluate how this interaction affects growth and mycorrhizal colonization of seedlings of both species.

View Article and Find Full Text PDF

Background: Although fertilization and crop rotation practices are commonly used worldwide in agriculture to maximize crop yields, their long-term effect on the structures of soil microorganisms is still poorly understood. This study investigated the long-term impact of fertilization and crop rotation on soil microbial diversity and the microbial community structure in four different locations with three soil types. Since 1996, manure (MF; 330 kg N/ha), sewage sludge (SF; 330 and SF3x; 990 kg N/ha), and NPK (NPK; 330 kg N/ha) fertilizers were periodically applied to the soils classified as chernozem, luvisol and cambisol, which are among the most abundant or fertile soils used for agricultural purposes in the world.

View Article and Find Full Text PDF

Although spatial and temporal variation are both important components structuring microbial communities, the exact quantification of temporal turnover rates of fungi and bacteria has not been performed to date. In this study, we utilised repeated resampling of bacterial and fungal communities at specific locations across multiple years to describe their patterns and rates of temporal turnover. Our results show that microbial communities undergo temporal change at a rate of 0.

View Article and Find Full Text PDF

There is no consensus barcoding region for determination of arbuscular mycorrhizal fungal (AMF) taxa. To overcome this obstacle, we have developed an approach to sequence an AMF marker within the ribosome-encoding operon (rDNA) that covers all three widely applied variable molecular markers. Using a nested PCR approach specific to AMF, we amplified a part (c.

View Article and Find Full Text PDF

Belowground litter derived from tree roots has been shown as a principal source of soil organic matter in coniferous forests. Fate of tree root necromass depends on fungal communities developing on the decaying roots. Local environmental conditions which affect composition of tree root mycobiome may also influence fungal communities developing on decaying tree roots.

View Article and Find Full Text PDF

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups).

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) colonize the roots of numerous aquatic and wetland plants, but the establishment and functioning of mycorrhizal symbiosis in submerged habitats have received only little attention. Three pot experiments were conducted to study the interaction of isoetid plants with native AMF. In the first experiment, arbuscular mycorrhizal (AM) symbiosis did not establish in roots of Isoëtes echinospora and I.

View Article and Find Full Text PDF