Publications by authors named "Petr Henke"

Herein, we performed a simple virus capture and photoinactivation procedure using visible light on phosphatidylcholine vesicles. l-α-Phosphatidylcholine vesicles were enriched by viral receptors, GT1b gangliosides, and the nonpolar photosensitizer 5,10,15,20-tetraphenylporphyrin. These vesicles absorb in the blue region of visible light with a high quantum yield of antiviral singlet oxygen, O (Δ).

View Article and Find Full Text PDF

2,5-Bis(phenylethynyl) rhodacyclopentadienes (RCPDs), as a type of Rh(iii) complex, exhibit unusually intense fluorescence and slow intersystem crossing (ISC) due to weak metal-ligand interactions. However, details on their ultrafast photophysics and ISC dynamics are limited. In this work, electronic relaxation upon photoexcitation of two substituted RCPDs with two -COMe (A-RC-A) or -NMe/-COMe (D-RC-A) end groups are comprehensively investigated using femtosecond transient absorption spectroscopy and theoretical analysis.

View Article and Find Full Text PDF

One key challenge in the development of viable organic photovoltaic devices is to design component molecules that do not degrade during combined exposure to oxygen and light. Such molecules should thus remain comparatively unreactive towards singlet molecular oxygen and not act as photosensitizers for the generation of this undesirable species. Here, novel redox-active chromophores that combine these two properties are presented.

View Article and Find Full Text PDF

Singlet oxygen, O(aΔ), the lowest excited electronic state of molecular oxygen, plays an important role in a range of chemical and biological processes. In liquid solvents, the reactions of singlet oxygen with a solute kinetically compete with solvent-mediated deactivation that yields the ground electronic state of oxygen, O(XΣ). In this regard, the key parameter is the solvent-mediated lifetime of singlet oxygen, which embodies fundamental physical principles ranging from intermolecular interactions that perturb the forbidden O(aΔ) → O(XΣ) transition to the transfer of oxygen's excitation energy into the vibrational modes of a solvent molecule M.

View Article and Find Full Text PDF

Clinically approved photodynamic therapy (PDT) is a minimally invasive treatment procedure that uses three key components: photosensitization, a light source, and tissue oxygen. However, the photodynamic effect is limited by both the photophysical properties of photosensitizers as well as their low selectivity, leading to damage to adjacent normal tissue and/or inadequate biodistribution. Nanoparticles (NPs) represent a new option for PDT that can overcome most of the limitations of conventional photosensitizers and can also promote photosensitizer accumulation in target cells through enhanced permeation and retention effects.

View Article and Find Full Text PDF

Photodynamic inactivation (PDI) is a promising approach for the efficient killing of pathogenic microbes. In this study, the photodynamic effect of sulfonated polystyrene nanoparticles with encapsulated hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP-NP) photosensitizers on Gram-positive (including multi-resistant) and Gram-negative bacterial strains was investigated. The cell viability was determined by the colony forming unit method.

View Article and Find Full Text PDF

A three-step postprocessing functionalization of pristine electrospun polystyrene nanofiber membranes was used for the preparation of nanostructured biotinylated materials with an externally bonded porphyrin photosensitizer. Subsequently, the material was able to strongly bind biologically active streptavidin derivatives while keeping its photosensitizing and antibacterial properties due to the generation of singlet oxygen under the exclusive control of visible light. The resulting multifunctional materials functionalized by a streptavidin-horseradish peroxidase conjugate as a model bioactive compound preserved its enzymatic activity even in the presence of a porphyrin photosensitizer with some quenching effect on the activity of the photosensitizer.

View Article and Find Full Text PDF

The transport of a photosensitizer to target biological structures followed by the release of singlet oxygen is a critical step in photodynamic therapy. We compared the (photo)physical properties of polystyrene nanoparticles () of different sizes and self-assembled poly(ethylene glycol)--poly(ε-caprolactone) core/shell nanoparticles () with different lengths of copolymer blocks, both suitable for the transport of the tetraphenylporphyrin (TPP) photosensitizer. The singlet oxygen was formed inside both nanoparticles after irradiation with visible light.

View Article and Find Full Text PDF

Aqueous dispersions of sulfonated polystyrene nanoparticles (average diameter: 30 ± 14 nm) with encapsulated 5,10,15,20-tetraphenylporphyrin (TPP) are promising candidates for antibacterial treatments due to the photogeneration of cytotoxic singlet oxygen species O(Δ) under physiological conditions using visible light. The antibacterial effect on gram-negative Escherichia coli was significantly enhanced after the addition of nontoxic potassium iodide (0.001-0.

View Article and Find Full Text PDF

Novel therapies to prevent bacterial infections are of utmost importance in biomedical research due to the emergence of multidrug-resistant strains of bacteria. Herein, we report the preparation, characterization and antibacterial evaluation of sulfonated polystyrene nanoparticles simultaneously releasing two antibacterial species, nitric oxide (NO) and singlet oxygen (O(Δ)), upon irradiation with visible light. The nanoparticles were prepared by simple and scalable processes from nanofiber membranes with an encapsulated NO photodonor and/or ionically entangled tetracationic porphyrin/phthalocyanine photosensitizers.

View Article and Find Full Text PDF

We report the synthesis and characterization of sulfonated polystyrene nanoparticles (average diameter 30 ± 14 nm) with encapsulated 5,10,15,20-tetraphenylporphyrin or ionically entangled tetracationic 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)porphyrin, their photooxidation properties, and the application of singlet oxygen-sensitized delayed fluorescence (SODF) in oxygen sensing. Both types of nanoparticles effectively photogenerated singlet oxygen, O(Δ). The O(Δ) phosphorescence, transient absorption of the porphyrin triplet states, and SODF signals were monitored using time-resolved spectroscopic techniques.

View Article and Find Full Text PDF

A simple nanoprecipitation method was used for preparation of stable photoactive polystyrene nanoparticles (NPs, diameter 30 ± 10 nm) from sulfonated electrospun polystyrene nanofiber membranes with encapsulated 5,10,15,20-tetraphenylporphyrin (TPP) or platinum octaethylporphyrin (Pt-OEP). The NPs prepared with TPP have strong antibacterial and antiviral properties and can be applied to the photooxidation of external substrates based on photogenerated singlet oxygen. In contrast to nanofiber membranes, which have limited photooxidation ability near the surface, NPs are able to travel toward target species/structures.

View Article and Find Full Text PDF

This contribution reports on the preparation, characterization, and biological evaluation of electrospun polystyrene nanofiber materials engineered with a covalently grafted NO photodonor and ionically entangled tetracationic porphyrin and phthalocyanine photosensitizers. These photofunctional materials exhibit an effective and simultaneous photogeneration of two antibacterial species such as nitric oxide (NO) and singlet oxygen, O2((1)Δg) under illumination with visible light, as demonstrated by their direct detection using amperometric and time-resolved spectroscopic techniques. Dual-mode photoantibacterial action is demonstrated by antibacterial tests carried out on Escherichia coli.

View Article and Find Full Text PDF

The surfaces of electrospun polystyrene (PS) nanofiber materials with encapsulated 1% w/w 5,10,15,20-tetraphenylporphyrin (TPP) photosensitizer were modified through sulfonation, radio frequency (RF) oxygen plasma treatment, and polydopamine coating. The nanofiber materials exhibited efficient photogeneration of singlet oxygen. The postprocessing modifications strongly increased the wettability of the pristine hydrophobic PS nanofibers without causing damage to the nanofibers, leakage of the photosensitizer, or any substantial change in the oxygen permeability of the inner bulk of the polymer nanofiber.

View Article and Find Full Text PDF

Electrospun nanofibers possess large surface to volume ratios, high porosity, and good mechanical properties that are necessary for biological applications. We prepared different types of photoactive polymeric nanofiber materials with encapsulated or externally bound porphyrin photosensitizers. The kinetics of formation and the decay of both singlet oxygen O2((1)Δg) and porphyrin triplet states that are generated by irradiation of nanofiber materials in an air atmosphere or in an air-saturated aqueous solution were measured and evaluated by luminescence and transient absorption spectroscopy in the temperature range between 5 and 60 °C.

View Article and Find Full Text PDF

Polystyrene ion-exchange nanofiber materials with large surface areas and adsorption capacities were prepared by electrospinning followed by the sulfonation and adsorption of a cationic 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) photosensitizer on the nanofiber surfaces. The morphology, structure, and photophysical properties of these nanofiber materials were characterized by microscopic methods and steady-state and time-resolved fluorescence and absorption spectroscopies. The externally bound TMPyP can be excited by visible light to form triplet states and singlet oxygen O2((1)Δg) and singlet oxygen-sensitized delayed fluorescence (SODF).

View Article and Find Full Text PDF