Abiraterone acetate (AbirAc) is the most used steroidal therapeutic agent for treatment of prostate cancer. The mainly hydrophobic molecular surface of AbirAc results in its poor solubility and plays an important role for retention of abiraterone in the cavity of the receptor formed by peptide chains and heme fragments. In order to evaluate the hydrolytic stability of AbirAc, to modify its solubility by formation of new solid forms and to model bonding of this medication with the heme, a series of d-metal complexes with AbirAc was obtained.
View Article and Find Full Text PDFThe concept of using redox-active ligands, which has become extremely widespread in organometallic chemistry, is often considered from 'their effect on the metal center properties' point of view and 'how to modify the ligands'. In this paper, we present the reverse side of this effective approach - a dramatic change of redox properties of ligands under the influence of a redox-inert metal. Germanium derivatives based on 2,3-dihydroxynaphthalene (1) and ,'-bidentate ligands, namely 2,2'-bipyridine (2) and 1,10-phenanthroline (3), were obtained and characterized by CV, UV-vis spectroscopy, DFT calculations and in the case of 3 X-ray diffraction.
View Article and Find Full Text PDFA series of new type hybrid bromobismuthates formed by various pyrazinium cations were isolated and studied. In the systems initially containing iodide anions and monocations of substituted pyrazines, the complexes based on doubly charged cations of substituted pyrazines instead of ones based on the corresponding monocations were surprisingly formed. The variation of substituted pyrazinium cations affects not only the crystal structures of hybrid bromobismuthates via tuning the nuclearity of the anions but also the hydrolytic stability of the compounds.
View Article and Find Full Text PDF