Publications by authors named "Petr Bilik"

It is important for older and disabled people who live alone to be able to cope with the daily challenges of living at home. In order to support independent living, the Smart Home Care (SHC) concept offers the possibility of providing comfortable control of operational and technical functions using a mobile robot for operating and assisting activities to support independent living for elderly and disabled people. This article presents a unique proposal for the implementation of interoperability between a mobile robot and KNX technology in a home environment within SHC automation to determine the presence of people and occupancy of occupied spaces in SHC using measured operational and technical variables (to determine the quality of the indoor environment), such as temperature, relative humidity, light intensity, and CO concentration, and to locate occupancy in SHC spaces using magnetic contacts monitoring the opening/closing of windows and doors by indirectly monitoring occupancy without the use of cameras.

View Article and Find Full Text PDF

This article presents a comprehensive system for testing and verifying shunt active power filter control methods. The aim of this experimental platform is to provide tools to a user to objectively compare the individual control methods. The functionality of the system was verified on a hardware platform using least mean squares and recursive least squares algorithms.

View Article and Find Full Text PDF

The study deals with detection of the occupation of Intelligent Building (IB) using data obtained from indirect methods with Big Data Analysis within IoT. In the area of daily living activity monitoring, one of the most challenging tasks is occupancy prediction, giving us information about people's mobility in the building. This task can be done via monitoring of as a reliable method, which has the ambition to predict the presence of the people in specific areas.

View Article and Find Full Text PDF

The field of advanced digital signal processing methods is one of the fastest developing scientific and technical disciplines, and is important in the field of Shunt Active Power Filter control methods. Shunt active power filters are highly desirable to minimize losses due to the increase in the number of nonlinear loads (deformed power). Currently, there is rapid development in new adaptive, non-adaptive, and especially hybrid methods of digital signal processing.

View Article and Find Full Text PDF

The wood industry is facing many challenges. The high variability of raw material and the complexity of manufacturing processes results in a wide range of visible structure defects, which have to be controlled by trained specialists. These manual processes are not only tedious and biased, but also less effective.

View Article and Find Full Text PDF

The number of smart homes is rapidly increasing. Smart homes typically feature functions such as voice-activated functions, automation, monitoring, and tracking events. Besides comfort and convenience, the integration of smart home functionality with data processing methods can provide valuable information about the well-being of the smart home residence.

View Article and Find Full Text PDF

The work investigates the application of artificial neural networks and logistic regression for the recognition of activities performed by room occupants. KNX (Konnex) standard-based devices were selected for smart home automation and data collection. The obtained data from these devices (Humidity, CO, temperature) were used in combination with two wearable gadgets to classify specific activities performed by the room occupant.

View Article and Find Full Text PDF

This study focuses on the design of a measuring system for monitoring the power quality within the SMART street lighting test polygon at university campuses with relation to testing an adaptive current control strategy for three-phase shunt active power filters. Unlike conventional street lighting, SMART elements are powered 24/7. Due to the electronic character of the power part of such mass appliances, there are increased problems with the power quality of the electric energy.

View Article and Find Full Text PDF

This paper is focused on the design, implementation and verification of a novel method for the optimization of the control parameters (such as step size μ and filter order ) of LMS and RLS adaptive filters used for noninvasive fetal monitoring. The optimization algorithm is driven by considering the ECG electrode positions on the maternal body surface in improving the performance of these adaptive filters. The main criterion for optimal parameter selection was the Signal-to-Noise Ratio (SNR).

View Article and Find Full Text PDF

This paper focuses on the design, realization, and verification of a novel phonocardiographic- based fiber-optic sensor and adaptive signal processing system for noninvasive continuous fetal heart rate (fHR) monitoring. Our proposed system utilizes two Mach-Zehnder interferometeric sensors. Based on the analysis of real measurement data, we developed a simplified dynamic model for the generation and distribution of heart sounds throughout the human body.

View Article and Find Full Text PDF

This paper describes the design, construction, and testing of a multi-channel fetal electrocardiogram (fECG) signal generator based on LabVIEW. Special attention is paid to the fetal heart development in relation to the fetus' anatomy, physiology, and pathology. The non-invasive signal generator enables many parameters to be set, including fetal heart rate (FHR), maternal heart rate (MHR), gestational age (GA), fECG interferences (biological and technical artifacts), as well as other fECG signal characteristics.

View Article and Find Full Text PDF