The possibility of using quantum computers for electronic structure calculations has opened up a promising avenue for computational chemistry. Towards this direction, numerous algorithmic advances have been made in the last five years. The potential of quantum annealers, which are the prototypes of adiabatic quantum computers, is yet to be fully explored.
View Article and Find Full Text PDFQuantum chemistry is interested in calculating ground and excited states of molecular systems by solving the electronic Schrödinger equation. The exact numerical solution of this equation, frequently represented as an eigenvalue problem, remains unfeasible for most molecules and requires approximate methods. In this paper we introduce the use of Quantum Community Detection performed using the D-Wave quantum annealer to reduce the molecular Hamiltonian matrix in Slater determinant basis without chemical knowledge.
View Article and Find Full Text PDFA fully quantized analysis is presented of induced magneto-electric rectification in individual diatomic molecules in the steady-state regime. Good agreement is obtained between this quantum theory and a classical model that includes the same key kinematic elements but predicts temporal dynamics as well. At the molecular level, an enhanced magneto-electric optical interaction driven by dual optical fields E and H is shown to give rise to a static electric dipole (ED) moment oriented along the propagation direction of linearly-polarized light in dielectric materials.
View Article and Find Full Text PDFAutler-Townes splitting (ATS) and electromagnetically induced transparency (EIT) both yield transparency in an absorption profile, but only EIT yields strong transparency for a weak pump field due to Fano interference. Empirically discriminating EIT from ATS is important but so far has been subjective. We introduce an objective method, based on Akaike's information criterion, to test ATS vs EIT from experimental data for three-level atomic systems and determine which pertains.
View Article and Find Full Text PDFWe study the sensitivity and resolution of phase measurement in a Mach-Zehnder interferometer with two-mode squeezed vacuum (n photons on average). We show that superresolution and sub-Heisenberg sensitivity is obtained with parity detection. In particular, in our setup, dependence of the signal on the phase evolves n times faster than in traditional schemes, and uncertainty in the phase estimation is better than 1/n, and we saturate the quantum Cramer-Rao bound.
View Article and Find Full Text PDFWe present an experimental and theoretical study of the carrier-envelope phase effects on population transfer between two bound atomic states interacting with intense ultrashort pulses. Radio frequency pulses are used to transfer population among the ground state hyperfine levels in rubidium atoms. These pulses are only a few cycles in duration and have Rabi frequencies of the order of the carrier frequency.
View Article and Find Full Text PDFJ Chem Phys
February 2006
The radial Schrodinger equation for a spherically symmetric potential can be regarded as a one-dimensional classical harmonic oscillator with a time-dependent spring constant. For solving classical dynamics problems, symplectic integrators are well known for their excellent conservation properties. The class of gradient symplectic algorithms is particularly suited for solving harmonic-oscillator dynamics.
View Article and Find Full Text PDF