Publications by authors named "Petr A Sokolov"

The attachment of functional DNA to gold nanoparticles via polyadenine adsorption is a well-established technology. This approach was mainly viewed through the lens of changing the DNA charge in order to reduce the electrostatic barrier created by a similarly charged gold surface. However, altering the DNA charge results in the loss of its functionality.

View Article and Find Full Text PDF

We report a novel model of the selective binding mechanism of adenosine-specific DNA aptamer. Our theoretical investigations of AMP (Adenosine monophosphate) dissociation from aptamer-AMP complexes reveals new details of aptamer molecular specificity and stabilisation factors. Umbrella sampling MD calculations using parmbsc1 force field shows that the disordered structure of the internal loop of the unbound aptamer hairpin has a characteristic packing of guanines, which prevents barrier-free penetration of ligands into the site cavity.

View Article and Find Full Text PDF

The study of the aggregation of amyloid proteins is challenging. A new approach to processing dynamic light scattering data was developed and tested using aggregates of the well-known model Sup35NM amyloid. After filtering and calculating the moving averages of autocorrelation functions to reduce impacts of noise, each averaged autocorrelation function is converted to the fibril length distribution via numerical modeling.

View Article and Find Full Text PDF

Nanostructures synthesized using DNA-conjugated gold nanoparticles have a wide range of applications in the field of biosensorics. The stability of the DNA duplex plays a critical role as it determines the final geometry of these nanostructures. The main way to control DNA stability is to maintain a high ionic strength of the buffer solution; at the same time, high salt concentrations lead to an aggregation of nanoparticles.

View Article and Find Full Text PDF

A number of [ ]-no-more (PNM) mutations, eliminating [ ] prion, were previously described in . In this study, we designed and analyzed a new PNM mutation based on the parallel in-register β-structure of Sup35 prion fibrils suggested by the known experimental data. In such an arrangement, substitution of non-charged residues by charged ones may destabilize the fibril structure.

View Article and Find Full Text PDF